Precontinuity and applications
<p>In this note, a map f acting between metric (or topological) spaces is referred to be pre-continuous at a point x if, for some sequence of points different from x and converging to x, the sequence converges to (section 2, Definition 1).</p>
Tallennettuna:
Päätekijä: | |
---|---|
Aineistotyyppi: | Kirja |
Julkaistu: |
Annals of Mathematics and Physics - Peertechz Publications,
2022-07-13.
|
Aiheet: | |
Linkit: | Connect to this object online. |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | peertech__10_17352_amp_000044 | ||
042 | |a dc | ||
100 | 1 | 0 | |a Janusz Matkowski |e author |
245 | 0 | 0 | |a Precontinuity and applications |
260 | |b Annals of Mathematics and Physics - Peertechz Publications, |c 2022-07-13. | ||
520 | |a <p>In this note, a map f acting between metric (or topological) spaces is referred to be pre-continuous at a point x if, for some sequence of points different from x and converging to x, the sequence converges to (section 2, Definition 1).</p> | ||
540 | |a Copyright © Janusz Matkowski et al. | ||
546 | |a en | ||
655 | 7 | |a Research Article |2 local | |
856 | 4 | 1 | |u https://doi.org/10.17352/amp.000044 |z Connect to this object online. |