Critical behavior and stability problem in a scalar field model

<p>As shown in the works [1-3], the asymptotic behavior of the propagator in the Euclidean region of momenta for the model of a complex scalar field φ and a real scalar field χ with the interaction  drastically changes depending on the value of the coupling constant. For small values of the co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vladimir Rochev (Autor)
Formato: Libro
Publicado: Annals of Mathematics and Physics - Peertechz Publications, 2022-11-29.
Materias:
Acceso en línea:Connect to this object online.
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000 am a22000003u 4500
001 peertech__10_17352_amp_000061
042 |a dc 
100 1 0 |a Vladimir Rochev  |e author 
245 0 0 |a Critical behavior and stability problem in a scalar field model 
260 |b Annals of Mathematics and Physics - Peertechz Publications,   |c 2022-11-29. 
520 |a <p>As shown in the works [1-3], the asymptotic behavior of the propagator in the Euclidean region of momenta for the model of a complex scalar field φ and a real scalar field χ with the interaction  drastically changes depending on the value of the coupling constant. For small values of the coupling, the propagator of the field φ behaves asymptotically as free, while in the strong-coupling region the propagator in the deep Euclidean region tends to be a constant.</p><p>In this paper, the influence of the vacuum stability problem of this model on this critical behavior is investigated. It is shown that within the framework of the approximations used, the addition of a stabilizing term of type  to the Lagrangian leads to a renormalization of the mass and does not change the main effect of changing the ultraviolet behavior of the propagator.</p><p>PACS number: 11.10.Jj.</p> 
540 |a Copyright © Vladimir Rochev et al. 
546 |a en 
655 7 |a Mini Review  |2 local 
856 4 1 |u https://doi.org/10.17352/amp.000061  |z Connect to this object online.