On Λ-fractional variational calculus

<p>Pointing out that Λ-fractional analysis is the unique fractional calculus theory including mathematically acceptable fractional derivatives, variational calculus for Λ-fractional analysis is established. Since Λ-fractional analysis is a non-local procedure, global extremals are only accepte...

Повний опис

Збережено в:
Бібліографічні деталі
Автори: KA Lazopoulos (Автор), AK Lazopoulos (Автор)
Формат: Книга
Опубліковано: Annals of Mathematics and Physics - Peertechz Publications, 2023-03-01.
Предмети:
Онлайн доступ:Connect to this object online.
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Резюме:<p>Pointing out that Λ-fractional analysis is the unique fractional calculus theory including mathematically acceptable fractional derivatives, variational calculus for Λ-fractional analysis is established. Since Λ-fractional analysis is a non-local procedure, global extremals are only accepted. That means the extremals should satisfy not only the Euler-Lagrange equation but also the additional Weierstrass-Erdmann corner conditions. Hence non-local stability criteria are introduced. The proposed variational procedure is applied to any branch of physics, mechanics, biomechanics, etc. The present analysis is applied to the Λ-fractional refraction of light. </p>
DOI:10.17352/amp.000074