Creation of an artificial intelligence system for analysis of theoretical Current-Voltage Curves

<p>We have developed the "Deep learning for CVC 0.1" software package, which contains databases and knowledge bases of theoretical Current-Voltage Curve (CVC) using the method of deep machine learning (Deep learning). The developed software package allows you to simulate mass transfe...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteurs: AV Kovalenko (Auteur), MKh Urtenov (Auteur)
Formaat: Boek
Gepubliceerd in: Trends in Computer Science and Information Technology - Peertechz Publications, 2020-06-19.
Onderwerpen:
Online toegang:Connect to this object online.
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000 am a22000003u 4500
001 peertech__10_17352_tcsit_000011
042 |a dc 
100 1 0 |a AV Kovalenko  |e author 
700 1 0 |a MKh Urtenov  |e author 
245 0 0 |a Creation of an artificial intelligence system for analysis of theoretical Current-Voltage Curves 
260 |b Trends in Computer Science and Information Technology - Peertechz Publications,   |c 2020-06-19. 
520 |a <p>We have developed the "Deep learning for CVC 0.1" software package, which contains databases and knowledge bases of theoretical Current-Voltage Curve (CVC) using the method of deep machine learning (Deep learning). The developed software package allows you to simulate mass transfer in Electromembrane Systems (EMS), which has a single interface with a built-in help system, analysis and synthesis of current-voltage characteristics. The software package was implemented using the software platform for computer modeling of physical processes COMSOL Multiphysics 5.5 and the application development environment COMSOL Multiphysics Application Builder, Java, Python, using the libraries OpenCV, TensorFlow, Keras.</p> 
540 |a Copyright © AV Kovalenko et al. 
546 |a en 
655 7 |a Short Communication  |2 local 
856 4 1 |u https://doi.org/10.17352/tcsit.000011  |z Connect to this object online.