Recommentdation methodology using dynamic and hybrid user profile, and multiple criteria decision making score prediction

Thesis (M.Sc.)--Chulalongkorn University, 2010

Sábháilte in:
Sonraí bibleagrafaíochta
Príomhchruthaitheoir: Pakapon Tangphoklang (Údar)
Rannpháirtithe: Saranya Maneeroj (Rannpháirtí), Chulalongkorn University. Faculty of Science (Rannpháirtí)
Formáid: LEABHAR
Foilsithe / Cruthaithe: Chulalongkorn University, 2013-10-31T00:55:18Z.
Ábhair:
Rochtain ar líne:http://cuir.car.chula.ac.th/handle/123456789/36478
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000 am a22000003u 4500
001 repochula_36478
042 |a dc 
100 1 0 |a Pakapon Tangphoklang  |e author 
245 0 0 |a Recommentdation methodology using dynamic and hybrid user profile, and multiple criteria decision making score prediction 
246 3 3 |a ระเบียบวิธีการแนะนำโดยใช้ประวัติผู้ใช้แบบพลวัติและแบบลูกผสม และการทำนายคะแนนแบบการตัดสินใจหลายเกณฑ์ 
260 |b Chulalongkorn University,   |c 2013-10-31T00:55:18Z. 
500 |a http://cuir.car.chula.ac.th/handle/123456789/36478 
520 |a Thesis (M.Sc.)--Chulalongkorn University, 2010 
520 |a Recommendation systems are widely used to help users acquire interesting information. Most current recommendation systems merely use the overall rating information (Single-Criteria) to recommend items. Some researchers have recently begun to exploit various aspects of an item's features to more precisely capture the users' preferences. The technique is called multi-criteria rating. The multi-criteria ratings are usually used to construct the user profiles. However, current multi-criteria recommendation systems still have difficulty updating a user profile depending on time. This report proposes a new multi-criteria rating method that can update user profiles in a required amount of time on an individual basis, and obtain more effective user profiles by exploiting both the user's preference and behavior profiles. Moreover, to increase the accuracy, we apply multi criteria decision making (MCDM) to the multi-criteria ratings to calculate an item's prediction value. We conducted experiments under varying conditions using a reliable database, Yahoo movies. The experimental results show that the proposed method outperforms a set of previous methods. 
520 |a ระบบผู้แนะนำได้ถูกนำมาใช้ช่วยเหลือผู้ใช้ในการเลือกสรรสารสนเทศที่มีความน่าสนใจ ระบบฯ ส่วนใหญ่เน้นใช้ข้อมูลคะแนนรวม (เกณฑ์เดี่ยว) ในการแนะนำไอเท็ม นักวิจัยบางกลุ่มจึงมีพยายามใช้ประโยชน์จากมุมมองในด้านต่างๆ ของไอเท็มเพื่อที่จะรับรู้ถึงรสนิยม ความชอบของผู้ใช้ ซึ่งเทคนิคดังกล่าวเรียกว่า การให้คะแนนแบบหลายเกณฑ์ และถูกใช้ในการทำประวัติของผู้ใช้ อย่างไรก็ดีระบบผู้แนะนำแบบหลายเกณฑ์ยังคงมีความยุ่งยากในเรื่องของการแก้ไขประวัติผู้ใช้ให้เป็นปัจจุบันเมื่อเวลาผ่านไป และในบางระบบฯ ประวัติผู้ใช้ไม่มีความเฉพาะเจาะจงต่อตัวผู้ใช้แต่ละคน งานวิจัยชิ้นนี้นำเสนอการสร้างประวัติผู้ใช้ที่สามารถแก้ไขให้เป็นปัจจุบันสำหรับผู้ใช้แต่ละคน และมีการพัฒนาให้ประวัติผู้ใช้นั้นมีประสิทธิภาพมากขึ้น โดยนำประวัติความชอบและประวัติพฤติกรรมของผู้ใช้มาสร้างประวัติส่วนตัวของผู้ใช้ นอกเหนือจากนั้นเพื่อเป็นการเพิ่มความถูกต้อง งานวิจัยชิ้นนี้ยังมีการประยุกต์หลักการของการตัดสินใจแบบหลายเกณฑ์ (MCDM) มาใช้บนการให้คะแนนแบบหลายเกณฑ์ในการทำนายค่าความชอบของไอเท็ม นักวิจัยได้ทำการทดลองภายใต้สภาวะอันหลากหลายบนฐานข้อมูล ยะฮูมูฟวี่(Yahoo movies) ซึ่งเป็นฐานข้อมูลที่มีความน่าเชื่อถือ และผลการทดลองได้แสดงให้ประจักษ์แล้วว่า วิธีการที่นำเสนอสามารถสร้างความถูกต้องให้กับระบบผู้แนะนำมากกว่าวิธีอื่นๆ ที่เคยมีมาก่อนหน้านี้ 
540 |a Chulalongkorn University 
546 |a en 
690 |a Recommender systems ‪(Information filtering)‬ 
690 |a Multiple criteria decision making 
690 |a ระบบแนะนำข้อมูล (การกรองสารสนเทศ) 
690 |a การตัดสินใจแบบพหุเกณฑ์ 
655 7 |a Thesis  |2 local 
100 1 0 |a Saranya Maneeroj  |e contributor 
100 1 0 |a Chulalongkorn University. Faculty of Science  |e contributor 
787 0 |n http://doi.org/10.14457/CU.the.2010.901 
856 4 1 |u http://cuir.car.chula.ac.th/handle/123456789/36478