Centre-based hard clustering algorithms for Y-STR data / Ali Seman, Zainab Abu Bakar and Azizian Mohd. Sapawi

This paper presents Centre-based hard clustering approaches for clustering Y-STR data. Two classical partitioning techniques: Centroid-based partitioning technique and Representative object-based partitioning technique are evaluated. The k-Means and the k-Modes algorithms are the fundamental algorit...

Full description

Saved in:
Bibliographic Details
Main Authors: Seman, Ali (Author), Abu Bakar, Zainab (Author), Mohd. Sapawi, Azizian (Author)
Format: Book
Published: Faculty of Computer and Mathematical Sciences, 2010.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repouitm_11101
042 |a dc 
100 1 0 |a Seman, Ali  |e author 
700 1 0 |a Abu Bakar, Zainab  |e author 
700 1 0 |a Mohd. Sapawi, Azizian  |e author 
245 0 0 |a Centre-based hard clustering algorithms for Y-STR data / Ali Seman, Zainab Abu Bakar and Azizian Mohd. Sapawi 
260 |b Faculty of Computer and Mathematical Sciences,   |c 2010. 
500 |a https://ir.uitm.edu.my/id/eprint/11101/1/11101.pdf 
520 |a This paper presents Centre-based hard clustering approaches for clustering Y-STR data. Two classical partitioning techniques: Centroid-based partitioning technique and Representative object-based partitioning technique are evaluated. The k-Means and the k-Modes algorithms are the fundamental algorithms for the centroid-based partitioning technique, whereas the k-Medoids is a representative object-based partitioning technique. The three algorithms above are experimented and evaluated in partitioning Y-STR haplogroups and Y-STR Surname data. The overall results show that the centroid-based partitioning technique is better than the representative object-based partitioning technique in clustering Y-STR data. 
546 |a en 
655 7 |a Article  |2 local 
655 7 |a PeerReviewed  |2 local 
787 0 |n https://ir.uitm.edu.my/id/eprint/11101/ 
787 0 |n https://mjoc.uitm.edu.my/ 
856 4 1 |u https://ir.uitm.edu.my/id/eprint/11101/  |z Link Metadata