A new estimator and its performance / Ng Set Foong, Low Heng Chin and Quah Soon Hoe

The Ordinary Least Squares Estimator is an unbiased estimator in estimating parameters in a linear regression model. In this paper, a new estimator is proposed as an alternative of the Ordinary Least Squares Estimator for linear regression model. The performance of this new estimator is compared wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Ng, Set Foong (Author), Low, Heng Chin (Author), Quah, Soon Hoe (Author)
Format: Book
Published: Universiti Teknologi MARA, Pulau Pinang & Pusat Penerbitan Universiti (UPENA), 2009.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repouitm_14813
042 |a dc 
100 1 0 |a Ng, Set Foong  |e author 
700 1 0 |a Low, Heng Chin  |e author 
700 1 0 |a Quah, Soon Hoe  |e author 
245 0 0 |a A new estimator and its performance / Ng Set Foong, Low Heng Chin and Quah Soon Hoe 
260 |b Universiti Teknologi MARA, Pulau Pinang & Pusat Penerbitan Universiti (UPENA),   |c 2009. 
500 |a https://ir.uitm.edu.my/id/eprint/14813/1/AJ_LOW%20HENG%20CHIN%20ESTEEM%2009.pdf 
520 |a The Ordinary Least Squares Estimator is an unbiased estimator in estimating parameters in a linear regression model. In this paper, a new estimator is proposed as an alternative of the Ordinary Least Squares Estimator for linear regression model. The performance of this new estimator is compared with other estimators in terms of mean squared error. 
546 |a en 
690 |a Regression analysis. Correlation analysis. Spatial analysis (Statistics) 
655 7 |a Article  |2 local 
655 7 |a PeerReviewed  |2 local 
787 0 |n https://ir.uitm.edu.my/id/eprint/14813/ 
856 4 1 |u https://ir.uitm.edu.my/id/eprint/14813/  |z Link Metadata