The effect of high leverage points on VIF measures on noncollinear data / Nurul Bariyah Ibrahim... [et al.]

Multicollinearity is a case of multiple regression in which the predictor variables are highly correlated among themselves. The problem will get more complicated when multicollinearity exists together with high leverage points. The usage of classical VIF for multicollinearity diagnostics is not reli...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim, Nurul Bariyah (Author), Midi, Habshah (Prof Dr.) (Author), Noor Ilanie Nordin, Noor Ilanie (Author), Ismail, Nor Azima (Author), Jauhari, Nur Elini (Author), Mohamad Sobri, Norafefah (Author)
Format: Book
Published: Unit Penerbitan UiTM Kelantan, 2016-06.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repouitm_24199
042 |a dc 
100 1 0 |a Ibrahim, Nurul Bariyah  |e author 
700 1 0 |a Midi, Habshah   |q  (Prof Dr.)   |e author 
700 1 0 |a Noor Ilanie Nordin, Noor Ilanie  |e author 
700 1 0 |a Ismail, Nor Azima  |e author 
700 1 0 |a Jauhari, Nur Elini  |e author 
700 1 0 |a Mohamad Sobri, Norafefah  |e author 
245 0 0 |a The effect of high leverage points on VIF measures on noncollinear data / Nurul Bariyah Ibrahim... [et al.] 
260 |b Unit Penerbitan UiTM Kelantan,   |c 2016-06. 
500 |a https://ir.uitm.edu.my/id/eprint/24199/1/9-Article%20Text-34-1-10-20181104%20-%20Combine%20Cover.pdf 
520 |a Multicollinearity is a case of multiple regression in which the predictor variables are highly correlated among themselves. The problem will get more complicated when multicollinearity exists together with high leverage points. The usage of classical VIF for multicollinearity diagnostics is not reliable as it is not resistant to the presence of high leverage points. In this study, we proposed RVIF which is based on the MM estimator in the detection of multicollinearity due to the high leverage point. The computation of RVIF is based on robust coefficient determination which is called RR2 (MM). We denote this estimator as RVIF (MM). The numerical results and Monte Carlo simulation study indicate that the CVIF performs poorly in the presence of high leverage point and the proposed RVIF is very resistant to the high leverage point and unable to detect the multicollinearity in the data. 
546 |a en 
690 |a Factor analysis. Principal components analysis. Correspondence analysis 
690 |a Analysis 
655 7 |a Article  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n https://ir.uitm.edu.my/id/eprint/24199/ 
787 0 |n https://jmcs.com.my/ 
856 4 1 |u https://ir.uitm.edu.my/id/eprint/24199/  |z Link Metadata