Investigation on fatigue life behaviour of sustainable bio-based fibre metal laminate / D. Sivakumar...[et al.]

Fibre-Metal Laminate (FML) is a hybrid structure which offers various advantages over conventional material. It had been used in automotive and aircraft sector since many years ago due to its lightweight and low cost properties. Previous study had shown FML had excellent fatigue crack resistance cha...

Full description

Saved in:
Bibliographic Details
Main Authors: D., Sivakumar (Author), L.F., Ng (Author), Selamat, Mohd Zulkefli (Author)
Format: Book
Published: Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM), 2017.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repouitm_37062
042 |a dc 
100 1 0 |a D., Sivakumar  |e author 
700 1 0 |a L.F., Ng  |e author 
700 1 0 |a Selamat, Mohd Zulkefli  |e author 
245 0 0 |a Investigation on fatigue life behaviour of sustainable bio-based fibre metal laminate / D. Sivakumar...[et al.] 
260 |b Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM),   |c 2017. 
500 |a https://ir.uitm.edu.my/id/eprint/37062/1/37062.pdf 
520 |a Fibre-Metal Laminate (FML) is a hybrid structure which offers various advantages over conventional material. It had been used in automotive and aircraft sector since many years ago due to its lightweight and low cost properties. Previous study had shown FML had excellent fatigue crack resistance characteristic compared to metallic alloy. This study shows the effects of different composition of oil palm empty fruit bunch (OPEFB) fibre on the fatigue life behaviour, hardness properties and mass of FML. FML was manufactured based on randomly oriented short OPEFB fibre and annealed aluminium alloy 6061. The FML panels were formed by bonding aluminium layers to composite by using the hot press compression moulding method with picture frame mould. Static test was conducted prior to fatigue test at quasi-static manner. The fatigue life of monolithic aluminium was investigated and set as a benchmark. The fatigue test was conducted at load levels of 80 to 95% of ultimate tensile strength using Universal Testing Machine. Results suggest that FML with 30% fibre loading had the highest fatigue resistance compared to other fibre composition. The mass of FML had been identified less than aluminium up to 30%. The hardness strength increases with increase fibre composition for composite while the hardness strength is relatively constant for FML. 
546 |a en 
690 |a TJ Mechanical engineering and machinery 
655 7 |a Article  |2 local 
655 7 |a PeerReviewed  |2 local 
787 0 |n https://ir.uitm.edu.my/id/eprint/37062/ 
787 0 |n https://jmeche.uitm.edu.my/ 
856 4 1 |u https://ir.uitm.edu.my/id/eprint/37062/  |z Link Metadata