Chromatic uniqueness of certain tripartite graphs identified with a path / G.C. Lau and Y.H. Peng

For a graph G, let P (G) be its chromatic polynomial. Two graphs G and H are chromatically equivalent if P(G) = P(H). A graph G is chromatically unique if P(H) = P(G) implies that H == G. In this paper, we classify the chromatic classes of graphs obtained from K2,2,2 u Pm (m ≥ 3) (respectively, (K2,...

Full description

Saved in:
Bibliographic Details
Main Authors: Lau, G.C (Author), Peng, Y.H (Author)
Format: Book
Published: 2004.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repouitm_50424
042 |a dc 
100 1 0 |a Lau, G.C.  |e author 
700 1 0 |a Peng, Y.H.  |e author 
245 0 0 |a Chromatic uniqueness of certain tripartite graphs identified with a path / G.C. Lau and Y.H. Peng 
260 |c 2004. 
500 |a https://ir.uitm.edu.my/id/eprint/50424/1/50424.PDF 
520 |a For a graph G, let P (G) be its chromatic polynomial. Two graphs G and H are chromatically equivalent if P(G) = P(H). A graph G is chromatically unique if P(H) = P(G) implies that H == G. In this paper, we classify the chromatic classes of graphs obtained from K2,2,2 u Pm (m ≥ 3) (respectively, (K2,2,2 - e) u Pm (m ≥ 5) where e is an edge of K2,2,2) by identifying the end vertices of the path Pm with any two vertices of K2,2,2 (respectively, K2,2,2 - e). As a by-product of this; we obtained some families of chromatically unique and chromatically equivalent classes of graphs. 
546 |a en 
690 |a Algebra 
690 |a Sequences (Mathematics) 
690 |a Analysis 
655 7 |a Conference or Workshop Item  |2 local 
655 7 |a PeerReviewed  |2 local 
787 0 |n https://ir.uitm.edu.my/id/eprint/50424/ 
856 4 1 |u https://ir.uitm.edu.my/id/eprint/50424/  |z Link Metadata