Predicting user acceptance of e-learning applications: web usage mining approach / Noraida Haji Ali ... [et al.]

The successful implementation of e-learning applications is closely related to user acceptance. Previous studies show the use of log files data in the web usage mining to predict user acceptance. However, the log files data did not record the entire behaviour of users who use the e-learning applicat...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Haji Ali, Noraida (Автор), W. Hamzah, W.M. Amir Fazamin (Автор), Yusoff, Hafiz (Автор), Saman, Md Yazid (Автор)
Формат:
Опубликовано: Penerbit UiTM (UiTM Press), 2015.
Предметы:
Online-ссылка:Link Metadata
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000 am a22000003u 4500
001 repouitm_59613
042 |a dc 
100 1 0 |a Haji Ali, Noraida  |e author 
700 1 0 |a W. Hamzah, W.M. Amir Fazamin  |e author 
700 1 0 |a Yusoff, Hafiz  |e author 
700 1 0 |a Saman, Md Yazid  |e author 
245 0 0 |a Predicting user acceptance of e-learning applications: web usage mining approach / Noraida Haji Ali ... [et al.] 
260 |b Penerbit UiTM (UiTM Press),   |c 2015. 
500 |a https://ir.uitm.edu.my/id/eprint/59613/1/59613.pdf 
520 |a The successful implementation of e-learning applications is closely related to user acceptance. Previous studies show the use of log files data in the web usage mining to predict user acceptance. However, the log files data did not record the entire behaviour of users who use the e-learning applications that are embedded in a website. Therefore, this study has proposed the web usage mining using Tin Can API to gather user's data. The Tin Can API will be used to track and to record user behaviours in e-learning applications. The generated data have been mapped to the Unified Theory of Acceptance and Use of Technology (UTAUT) for predicting of user acceptance of e-learning applications. From regression analysis, the results showed the performance expectancy and effort expectancy were found directly and significantly related to the intention to use e-learning applications. Behavioural intention and facilitating conditions also were found directly and significantly related to the behaviour of use of e-learning applications. Thus, the approach of web usage mining using Tin Can API can be used to gather usage data for predicting user acceptance of e-learning applications. 
546 |a en 
655 7 |a Article  |2 local 
655 7 |a PeerReviewed  |2 local 
787 0 |n https://ir.uitm.edu.my/id/eprint/59613/ 
787 0 |n https://journalined.uitm.edu.my/ 
856 4 1 |u https://ir.uitm.edu.my/id/eprint/59613/  |z Link Metadata