Applied machine learning to estimate length of separation and reattachment flows as parameter active flow control in backward facing step / Ahmad Fakhri Giyats, Mohamad Yamin and Cokorda Prapti Mahandari

Recently, large amounts of data from experimental measurements and simulations with high fidelity have extensively accelerated fluid mechanics advancement. Machine learning (ML) offers a wealth of techniques to extract data that can be translated into knowledge about the underlying fluid mechanics....

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Giyats, Ahmad Fakhri (Egilea), Yamin, Mohamad (Egilea), Cokorda Prapti Mahandari, Cokorda Prapti Mahandari (Egilea)
Formatua: Liburua
Argitaratua: Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM), 2023-09.
Gaiak:
Sarrera elektronikoa:Link Metadata
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!