TOPOLOGI KOMPAK LOKAL HAUSDORFF PADA RUANG LINTASAN TAK HINGGA
Aljabar-C^* telah banyak dimodelkan melalui pendekatan graf dan groupoid. Kumjian, Pask, Raeburn, Renault (1997) menyatakan bahwa unit space dari groupoid G merupakan ruang lintasan tak hingga E^∞ dari graf berarah baris-berhingga E. Webster (2010) mengkaji lebih dalam bagaimana cara mengkonstruksi...
Saved in:
Main Author: | |
---|---|
Format: | Book |
Published: |
2014-06-25.
|
Subjects: | |
Online Access: | Link Metadata |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | repoupi_14518 | ||
042 | |a dc | ||
100 | 1 | 0 | |a Sudhagama, Azico |e author |
245 | 0 | 0 | |a TOPOLOGI KOMPAK LOKAL HAUSDORFF PADA RUANG LINTASAN TAK HINGGA |
260 | |c 2014-06-25. | ||
500 | |a http://repository.upi.edu/14518/1/S_MAT_1002579_Title.pdf | ||
500 | |a http://repository.upi.edu/14518/2/S_MAT_1002579_Table_of_content.pdf | ||
500 | |a http://repository.upi.edu/14518/3/S_MAT_1002579_Abstract.pdf | ||
500 | |a http://repository.upi.edu/14518/4/S_MAT_1002579_Chapter1.pdf | ||
500 | |a http://repository.upi.edu/14518/5/S_MAT_1002579_Chapter2.pdf | ||
500 | |a http://repository.upi.edu/14518/6/S_MAT_1002579_Chapter3.pdf | ||
500 | |a http://repository.upi.edu/14518/7/S_MAT_1002579_Chapter4.pdf | ||
500 | |a http://repository.upi.edu/14518/8/S_MAT_1002579_Chapter5.pdf | ||
500 | |a http://repository.upi.edu/14518/9/S_MAT_1002579_Bibliograhy.pdf | ||
520 | |a Aljabar-C^* telah banyak dimodelkan melalui pendekatan graf dan groupoid. Kumjian, Pask, Raeburn, Renault (1997) menyatakan bahwa unit space dari groupoid G merupakan ruang lintasan tak hingga E^∞ dari graf berarah baris-berhingga E. Webster (2010) mengkaji lebih dalam bagaimana cara mengkonstruksi topologi kompak lokal Hausdorff pada ruang lintasan tak hingga E^∞ dari graf berarah baris-berhingga. Pada tulisan ini dipelajari bagaimana cara mengkonstruksi topologi pada ruang E^∞ yang merupakan subruang dari topologi produk ∏_N▒E^1 . Dijelaskan pula basis dari ruang topologi E^∞. A C^*-algebra can be modeled using graph and groupoid approach. Kumjian, Pask, Raeburn, Renault (1997) stated that unit space of groupoid G is the infinite path space E^∞ of row-finite directed graph E. Furthermore, Webster (2010) has examined on how to construct locally compact Hausdorff on infinite path space E^∞ of row-finite directed graph. This paper deals with the process to construct topology on space E^∞ which is considered as subspace of product topology ∏_N▒E^1 . This paper also elaborate basis of topological space E^∞ | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
546 | |a en | ||
690 | |a L Education (General) | ||
655 | 7 | |a Thesis |2 local | |
655 | 7 | |a NonPeerReviewed |2 local | |
787 | 0 | |n http://repository.upi.edu/14518/ | |
787 | 0 | |n http://repository.upi.edu | |
856 | |u https://repository.upi.edu/14518 |z Link Metadata |