DISTRIBUTION BASED FUZZY TIME SERIES MARKOV CHAIN PADA PERAMALAN INFLASI

Penelitian ini membahas tentang penerapan metode Fuzzy Time Series Markov Chain (FTSMC) yang dikembangkan dengan penentuan panjang interval menggunakan metode distribusi. Pada peramalan dengan menggunakan metode fuzzy penentuan panjang interval merupakan hal penting yang akan berpengaruh pada pemben...

Full description

Saved in:
Bibliographic Details
Main Author: Salsabila Ayu Pratiwi, - (Author)
Format: Book
Published: 2021-08-25.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupi_64506
042 |a dc 
100 1 0 |a Salsabila Ayu Pratiwi, -  |e author 
245 0 0 |a DISTRIBUTION BASED FUZZY TIME SERIES MARKOV CHAIN PADA PERAMALAN INFLASI 
260 |c 2021-08-25. 
500 |a http://repository.upi.edu/64506/8/S_MAT_1702618_Title.pdf 
500 |a http://repository.upi.edu/64506/2/S_MAT_1702618_Chapter1.pdf 
500 |a http://repository.upi.edu/64506/3/S_MAT_1702618_Chapter2.pdf 
500 |a http://repository.upi.edu/64506/4/S_MAT_1702618_Chapter3.pdf 
500 |a http://repository.upi.edu/64506/5/S_MAT_1702618_Chapter4.pdf 
500 |a http://repository.upi.edu/64506/6/S_MAT_1702618_Chapter5.pdf 
500 |a http://repository.upi.edu/64506/7/S_MAT_1702618_Appendix.pdf 
520 |a Penelitian ini membahas tentang penerapan metode Fuzzy Time Series Markov Chain (FTSMC) yang dikembangkan dengan penentuan panjang interval menggunakan metode distribusi. Pada peramalan dengan menggunakan metode fuzzy penentuan panjang interval merupakan hal penting yang akan berpengaruh pada pembentukan himpunan fuzzy yang akhirnya akan berpengaruh pada hasil peramalan. Pengembangan model peramalan ini bertujuan untuk mendapatkan akurasi hasil peramalan yang lebih baik. Data yang digunakan dalam penelitian ini adalah data inflasi umum Kota Bandung dari Januari 2016 sampai Juni 2021. Data dibagi ke dalam dua kelompok yaitu data training dan data testing dengan rasio 90 : 10. Dalam penelitian ini digunakan program Python untuk proses pengolahan data. Berdasarkan uji akurasi menggunakan MAPE dapat disimpulkan bahwa metode Distribution Based Fuzzy Time Series Markov Chain memberikan hasil peramalan yang lebih baik dengan nilai MAPE sebesar 1,16%. This study discusses the application of the Fuzzy Time Series Markov Chain (FTSMC) method which was developed by determining the length of the interval using the distribution method. In forecasting using the fuzzy method, determining the length of the interval is an important thing that will affect the formation of fuzzy sets which will ultimately affect the forecasting results. The development of this forecasting model aims to get better accuracy of forecasting results. The data used in this study is general inflation data for the city of Bandung from January 2016 to June 2021. The data is divided into two phases, namely training data and testing data with the ratio of 90: 10. Python program is used for data processing. Based on the accuracy test using MAPE, it can be concluded that the Distribution Based Fuzzy Time Series Markov Chain method provides better forecasting results with a MAPE value of 1.16%. 
546 |a en 
546 |a en 
546 |a en 
546 |a en 
546 |a en 
546 |a en 
546 |a en 
690 |a L Education (General) 
690 |a QA Mathematics 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upi.edu/64506/ 
787 0 |n http://repository.upi.edu 
856 |u https://repository.upi.edu/64506  |z Link Metadata