PENGARUH SELEKSI FITUR PARTICLE SWARM OPTIMIZATION TERHADAP SENTIMEN ANALISIS APLIKASI PEDULILINDUNGI DI TWITTER DENGAN ALGORITMA SUPPORT VECTOR MACHINE

PeduliLindungi is an application aimed at the public to prevent and deal with COVID-19 in Indonesia. This application must be owned by the Indonesian people, as one of the obligations made by the government from the legislation made to enter public facilities. Of course, this application also certai...

Full description

Saved in:
Bibliographic Details
Main Author: Irza Ramira Putra, (Author)
Format: Book
Published: 2022-07-22.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupnvj_19833
042 |a dc 
100 1 0 |a Irza Ramira Putra, .  |e author 
245 0 0 |a PENGARUH SELEKSI FITUR PARTICLE SWARM OPTIMIZATION TERHADAP SENTIMEN ANALISIS APLIKASI PEDULILINDUNGI DI TWITTER DENGAN ALGORITMA SUPPORT VECTOR MACHINE 
260 |c 2022-07-22. 
500 |a http://repository.upnvj.ac.id/19833/1/ABSTRAK.pdf 
500 |a http://repository.upnvj.ac.id/19833/2/AWAL.pdf 
500 |a http://repository.upnvj.ac.id/19833/3/BAB%201.pdf 
500 |a http://repository.upnvj.ac.id/19833/4/BAB%202.pdf 
500 |a http://repository.upnvj.ac.id/19833/5/BAB%203.pdf 
500 |a http://repository.upnvj.ac.id/19833/6/BAB%204.pdf 
500 |a http://repository.upnvj.ac.id/19833/7/BAB%205.pdf 
500 |a http://repository.upnvj.ac.id/19833/8/DAFTAR%20PUSTAKA.pdf 
500 |a http://repository.upnvj.ac.id/19833/9/RIWAYAT%20HIDUP.pdf 
500 |a http://repository.upnvj.ac.id/19833/10/LAMPIRAN.pdf 
500 |a http://repository.upnvj.ac.id/19833/11/HASIL%20PLAGIARISME.pdf 
500 |a http://repository.upnvj.ac.id/19833/12/ARTIKEL%20KI.pdf 
520 |a PeduliLindungi is an application aimed at the public to prevent and deal with COVID-19 in Indonesia. This application must be owned by the Indonesian people, as one of the obligations made by the government from the legislation made to enter public facilities. Of course, this application also certainly brings some feedback from the community. The response can be expressed through quite popular social media such as twitter. Through twitter, they are free to express their opinion about using the application. This study intends to obtain sentiment information related to public opinion related to the use of the PeduliLindungi application, by applying the Support Vector Machine algorithm with the Radial Basis Function kernel and the feature selection Particle Swarm Optimization algorithm in classifying public opinion on the PeduliLindungi application from the tweet data that has been obtained and labelled sentiment as positive and negative. The Support Vector Machine model produces accuracy of 76.24%, recall (sensitivity) of 82.14%, precision of 76.67% and specificity of 68.89%, while the Support Vector Machine model with the Particle Swarm Optimization feature selection increases accuracy to 88.12%, recall (sensitivity) to 96.43%, precision to 84.36% and specificity to 77.78% 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
690 |a QA75 Electronic computers. Computer science 
690 |a T Technology (General) 
690 |a Z665 Library Science. Information Science 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upnvj.ac.id/19833/ 
787 0 |n https://repository.upnvj.ac.id/ 
856 4 1 |u http://repository.upnvj.ac.id/19833/  |z Link Metadata