ANALISIS KLASIFIKASI SENTIMEN PENGGUNA APLIKASI PEDULINDUNGI BERDASARKAN ULASAN DENGAN MENGGUNAKAN METODE LONG SHORT TERM MEMORY

The PeduliLindungi application was built for surveillance during the COVID-19 pandemic. This application is used as a container for handling and making it easier for the public when traveling by sharing location data so that tracing contact history with Covid-19 sufferers can be more easily handled...

Full description

Saved in:
Bibliographic Details
Main Author: Ghifari Ahmad Lustiansyah, (Author)
Format: Book
Published: 2022-07-06.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupnvj_20338
042 |a dc 
100 1 0 |a Ghifari Ahmad Lustiansyah, .  |e author 
245 0 0 |a ANALISIS KLASIFIKASI SENTIMEN PENGGUNA APLIKASI PEDULINDUNGI BERDASARKAN ULASAN DENGAN MENGGUNAKAN METODE LONG SHORT TERM MEMORY 
260 |c 2022-07-06. 
500 |a http://repository.upnvj.ac.id/20338/1/ABSTRAK.pdf 
500 |a http://repository.upnvj.ac.id/20338/2/AWAL.pdf 
500 |a http://repository.upnvj.ac.id/20338/3/BAB%201.pdf 
500 |a http://repository.upnvj.ac.id/20338/4/BAB%202.pdf 
500 |a http://repository.upnvj.ac.id/20338/5/BAB%203.pdf 
500 |a http://repository.upnvj.ac.id/20338/6/BAB%204.pdf 
500 |a http://repository.upnvj.ac.id/20338/7/BAB%205.pdf 
500 |a http://repository.upnvj.ac.id/20338/8/DAFTAR%20PUSTAKA.pdf 
500 |a http://repository.upnvj.ac.id/20338/9/RIWAYAT%20HIDUP.pdf 
500 |a http://repository.upnvj.ac.id/20338/10/LAMPIRAN.pdf 
500 |a http://repository.upnvj.ac.id/20338/11/HASIL%20PLAGIARISME.pdf 
500 |a http://repository.upnvj.ac.id/20338/12/ARTIKEL%20KI.pdf 
520 |a The PeduliLindungi application was built for surveillance during the COVID-19 pandemic. This application is used as a container for handling and making it easier for the public when traveling by sharing location data so that tracing contact history with Covid-19 sufferers can be more easily handled and carried out immediately. After this application was released on the Google Play Store, many reviews were commented on by users of this application, ranging from negative comments to positive comments. Therefore, this study will analyses the sentiments of the reviews given by users of the PeduliLindungi application using the Long Short Term Memory method. The use of this method is expected to get high accuracy so that this method can classify negative comments and positive comments to get an evaluation that can improve services to the community through this application. The stages carried out in this study used data preprocessing stages such as case folding, filtering, word normalization, stopword removal, stemming, and tokenization. After that, the data was trained using the LSTM model and obtained an accuracy of 82.44%, precision of 78.66%, and recall of 87.03%. 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
690 |a Q Science (General) 
690 |a QA75 Electronic computers. Computer science 
690 |a QA76 Computer software 
690 |a T Technology (General) 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upnvj.ac.id/20338/ 
787 0 |n http://repository.upnvj.ac.id/ 
856 4 1 |u http://repository.upnvj.ac.id/20338/  |z Link Metadata