KLASIFIKASI KEPUASAN PELANGGAN COFFEE SHOP PATURUPA MENGGUNAKAN DECISION TREE

Coffee shops are currently popular in Indonesia, and the current situation also allows coffee shops to compete to increase customer satisfaction. Paturupa one of coffee shop located in Bekasi want to know about how customer satisfaction in Paturupa and factor that is important for their customer sat...

Full description

Saved in:
Bibliographic Details
Main Author: Siti Hinggit, (Author)
Format: Book
Published: 2023-06-22.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupnvj_25143
042 |a dc 
100 1 0 |a Siti Hinggit, .  |e author 
245 0 0 |a KLASIFIKASI KEPUASAN PELANGGAN COFFEE SHOP PATURUPA MENGGUNAKAN DECISION TREE 
260 |c 2023-06-22. 
500 |a http://repository.upnvj.ac.id/25143/14/ABSTRAK.pdf 
500 |a http://repository.upnvj.ac.id/25143/15/AWAL.pdf 
500 |a http://repository.upnvj.ac.id/25143/3/BAB%201.pdf 
500 |a http://repository.upnvj.ac.id/25143/4/BAB%202.pdf 
500 |a http://repository.upnvj.ac.id/25143/5/BAB%203.pdf 
500 |a http://repository.upnvj.ac.id/25143/6/BAB%204.pdf 
500 |a http://repository.upnvj.ac.id/25143/7/BAB%205.pdf 
500 |a http://repository.upnvj.ac.id/25143/8/DAFTAR%20PUSTAKA.pdf 
500 |a http://repository.upnvj.ac.id/25143/9/RIWAYAT%20HIDUP.pdf 
500 |a http://repository.upnvj.ac.id/25143/10/LAMPIRAN.pdf 
500 |a http://repository.upnvj.ac.id/25143/13/HASIL%20PLAGIARISME.pdf 
500 |a http://repository.upnvj.ac.id/25143/12/ARTIKEL%20KI.pdf 
520 |a Coffee shops are currently popular in Indonesia, and the current situation also allows coffee shops to compete to increase customer satisfaction. Paturupa one of coffee shop located in Bekasi want to know about how customer satisfaction in Paturupa and factor that is important for their customer satisfaction. For realizing, data are needed which are obtained from customer satisfaction questionnaires in Paturupa which are share through google forms. The data are obtained as many as 150 data with labels "Yes" and "No" which are divided into train data and test data. The train data are used to build a model with the Decision Tree C4.5 algorithm and use SMOTE and NearMiss for handling imbalanced data and obtained entropy and information gain values to determine the roots of nodes and other nodes. The best performance results are reached by this study with splitting data 70% for train data and 30% for test data that using NearMiss method, accuracy score is 96%, recall score is 100%, precision score is 95%, and specificity score is 75%. 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
690 |a QA75 Electronic computers. Computer science 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upnvj.ac.id/25143/ 
787 0 |n http://repository.upnvj.ac.id 
856 4 1 |u http://repository.upnvj.ac.id/25143/  |z Link Metadata