SISTEM REKOMENDASI PRODUK MENGGUNAKAN IMPLICIT FEEDBACK BERBASIS COLLABORATIVE FILTERING PADA E-COMMERCE

Currently, the Indonesian people on buy and sell activities depend on e-commerce. The high growth of e-commerce produces transaction data on a massive scale can be used as a marketing strategy by companies, one of which is the Recommendation System. Recommendation System is a tool for estimate inter...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Nugraha Mahardhika, (Author)
Format: Book
Published: 2023-07-04.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupnvj_25530
042 |a dc 
100 1 0 |a Muhammad Nugraha Mahardhika, .  |e author 
245 0 0 |a SISTEM REKOMENDASI PRODUK MENGGUNAKAN IMPLICIT FEEDBACK BERBASIS COLLABORATIVE FILTERING PADA E-COMMERCE 
260 |c 2023-07-04. 
500 |a http://repository.upnvj.ac.id/25530/14/ABSTRAK.pdf 
500 |a http://repository.upnvj.ac.id/25530/13/AWAL.pdf 
500 |a http://repository.upnvj.ac.id/25530/3/BAB%201.pdf 
500 |a http://repository.upnvj.ac.id/25530/4/BAB%202.pdf 
500 |a http://repository.upnvj.ac.id/25530/5/BAB%203.pdf 
500 |a http://repository.upnvj.ac.id/25530/6/BAB%204.pdf 
500 |a http://repository.upnvj.ac.id/25530/7/BAB%205.pdf 
500 |a http://repository.upnvj.ac.id/25530/8/DAFTAR%20PUSTAKA.pdf 
500 |a http://repository.upnvj.ac.id/25530/15/LAMPIRAN.pdf 
500 |a http://repository.upnvj.ac.id/25530/9/RIWAYAT%20HIDUP.pdf 
500 |a http://repository.upnvj.ac.id/25530/11/HASIL%20PLAGIARISME.pdf 
500 |a http://repository.upnvj.ac.id/25530/12/ARTIKEL%20KI.pdf 
520 |a Currently, the Indonesian people on buy and sell activities depend on e-commerce. The high growth of e-commerce produces transaction data on a massive scale can be used as a marketing strategy by companies, one of which is the Recommendation System. Recommendation System is a tool for estimate interested product based on matching the characteristics of each user with machine learning. Recommendation systems generally use collaborative filtering explicit feedback as a value of user interest on product. However, this causes data limitation problems (cold-start) because only based on transaction data that has been rated by the user. Instead of using explicit feedback, other solutions can use implicit feedback to avoid cold-start problems. By using implicit feedback, system can predict based on the number of user transactions for stores and product category. In this study, Singular Value Decomposition (SVD) is used as a matrix factorization model algorithm to find similarity between one and another user based on the feedback value. The results of the model show good performance with score RMSE ± 0,865 and MAE ± 0,508. 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
690 |a QA75 Electronic computers. Computer science 
690 |a QA76 Computer software 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upnvj.ac.id/25530/ 
787 0 |n http://repository.upnvj.ac.id 
856 4 1 |u http://repository.upnvj.ac.id/25530/  |z Link Metadata