PEMODELAN PREDIKSI KEKASARAN PERMUKAAN PADA PADUAN ALUMINIUM 7075

In the manufacturing industry, surface roughness is one aspect in determining the quality of a product. To get a quality that is qualified requires an experiment that incurs costs and time in order to get the desired quality. To generate efficiency, the research continued with the development of a p...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Destri Mardhani, (Author)
Format: Book
Published: 2024-01-09.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupnvj_29001
042 |a dc 
100 1 0 |a Muhammad Destri Mardhani, .  |e author 
245 0 0 |a PEMODELAN PREDIKSI KEKASARAN PERMUKAAN PADA PADUAN ALUMINIUM 7075 
260 |c 2024-01-09. 
500 |a http://repository.upnvj.ac.id/29001/1/ABSTRAK.pdf 
500 |a http://repository.upnvj.ac.id/29001/29/AWAL.pdf 
500 |a http://repository.upnvj.ac.id/29001/3/BAB%201.pdf 
500 |a http://repository.upnvj.ac.id/29001/4/BAB%202.pdf 
500 |a http://repository.upnvj.ac.id/29001/5/BAB%203.pdf 
500 |a http://repository.upnvj.ac.id/29001/6/BAB%204.pdf 
500 |a http://repository.upnvj.ac.id/29001/7/BAB%205.pdf 
500 |a http://repository.upnvj.ac.id/29001/8/DAFTAR%20PUSTAKA.pdf 
500 |a http://repository.upnvj.ac.id/29001/25/RIWAYAT%20HIDUP.pdf 
500 |a http://repository.upnvj.ac.id/29001/10/LAMPIRAN.pdf 
500 |a http://repository.upnvj.ac.id/29001/11/HASIL%20PLAGIARISME.pdf 
500 |a http://repository.upnvj.ac.id/29001/27/ARTIKEL%20KI.pdf 
520 |a In the manufacturing industry, surface roughness is one aspect in determining the quality of a product. To get a quality that is qualified requires an experiment that incurs costs and time in order to get the desired quality. To generate efficiency, the research continued with the development of a prediction model for surface roughness output performance using artificial neural networks. The observed parameters involve spindle speed, feed, and depth of cut. There are 27 data samples obtained from the machining process using a CNC Router with variations in the specified parameters, then modeling using an artificial neural network model. The artificial neural network achieved Normalize Root Mean Squared Error (NRMSE) with an error rate of 17.5% for all patterns. The results showed a good correlation between the actual values of the surface roughness experiments and the artificial neural network prediction model 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
690 |a QA75 Electronic computers. Computer science 
690 |a T Technology (General) 
690 |a TJ Mechanical engineering and machinery 
690 |a TS Manufactures 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upnvj.ac.id/29001/ 
787 0 |n https://repository.upnvj.ac.id 
856 4 1 |u http://repository.upnvj.ac.id/29001/  |z Link Metadata