Résultats de la recherche - "generative adversarial networks"

  1. 61

    Advanced Machine Learning Applications in Big Data Analytics

    Publié 2023
    Sujets: “…generative adversarial network…”
    DOAB: download the publication
    DOAB: description of the publication
    Électronique Chapitre de livre
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67

    Multimedia Forensics

    Publié 2022
    DOAB: download the publication
    DOAB: description of the publication
    Électronique Chapitre de livre
  8. 68

    Multimedia Forensics

    Publié 2022
    Link to Metadata
    Électronique eBook
  9. 69
  10. 70
  11. 71
  12. 72

    Multimedia Forensics

    Publié 2022
    OAPEN Library: download the publication
    OAPEN Library: description of the publication
    Électronique Chapitre de livre
  13. 73

    Computational Methods for Medical and Cyber Security

    Publié 2022
    DOAB: download the publication
    DOAB: description of the publication
    Électronique Chapitre de livre
  14. 74
  15. 75
  16. 76
  17. 77
  18. 78

    Machine Learning for Brain Disorders

    Publié 2023
    Table des matières: “…A Non-Technical Introduction to Machine Learning -- Classic Machine Learning Methods -- Deep Learning: Basics and Convolutional Neural Networks (CNN) -- Recurrent Neural Networks (RNN) - Architectures, Training Tricks, and Introduction to Influential Research -- Generative Adversarial Networks and Other Generative Models -- Transformers and Visual Transformers -- Clinical Assessment of Brain Disorders -- Neuroimaging in Machine Learning for Brain Disorders -- Electroencephalography and Magnetoencephalography -- Working with Omics Data, An Interdisciplinary Challenge at the Crossroads of Biology and Computer Science -- Electronic Health Records as Source of Research Data -- Mobile Devices, Connected Objects, and Sensors -- Medical Image Segmentation using Deep Learning -- Image Registration: Fundamentals and Recent Advances Based on Deep Learning -- Computer-Aided Diagnosis and Prediction in Brain Disorders -- Subtyping Brain Diseases from Imaging Data -- Data-Driven Disease Progression Modelling -- Computational Pathology for Brain Disorders -- Integration of Multimodal Data -- Evaluating Machine Learning Models and their Diagnostic Value -- Reproducibility in Machine Learning for Medical Imaging -- Interpretability of Machine Learning Methods Applied to Neuroimaging -- A Regulatory Science Perspective on Performance Assessment of Machine Learning Algorithms in Imaging -- Main Existing Datasets for Open Brain Research on Humans -- Machine Learning for Alzheimer's Disease and Related Dementias -- Machine Learning for Parkinson's Disease and Related Disorders -- Machine Learning in Neuroimaging of Epilepsy -- Machine Learning in Multiple Sclerosis -- Machine Learning for Cerebrovascular Disorders -- The Role of Artificial Intelligence in Neuro-Oncology Imaging -- Machine Learning for Neurodevelopmental Disorders -- Machine Learning and BrainImaging for Psychiatric Disorders: New Perspectives.…”
    Link to Metadata
    Électronique eBook
  19. 79
  20. 80

    xxAI - Beyond Explainable AI International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers /

    Publié 2022
    Table des matières: “…Editorial -- xxAI - Beyond explainable Artificial Intelligence -- Current Methods and Challenges -- Explainable AI Methods - A Brief Overview -- Challenges in Deploying Explainable Machine Learning -- Methods for Machine Learning Models -- CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations -- New Developments in Explainable AI -- A Rate-Distortion Framework for Explaining Black-box Model Decisions -- Explaining the Predictions of Unsupervised Learning Models -- Towards Causal Algorithmic Recourse -- Interpreting Generative Adversarial Networks for Interactive Image Generation -- XAI and Strategy Extraction via Reward Redistribution -- Interpretable, Verifiable, and Robust Reinforcement Learning via Program Synthesis -- Interpreting and improving deep-learning models with reality checks -- Beyond the Visual Analysis of Deep Model Saliency -- ECQ^2: Quantization for Low-Bit and Sparse DNNs -- A whale's tail - Finding the right whale in an uncertain world -- Explainable Artificial Intelligence in Meteorology and Climate Science: Model fine-tuning, calibrating trust and learning new science -- An Interdisciplinary Approach to Explainable AI.…”
    Link to Metadata
    Électronique eBook