A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions

In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calc...

Cur síos iomlán

Sábháilte in:
Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Marichal, Jean-Luc (Údar), Zenaïdi, Naïm (Údar)
Údar corparáideach: SpringerLink (Online service)
Formáid: Leictreonach Ríomhleabhar
Teanga:Béarla
Foilsithe / Cruthaithe: Cham : Springer International Publishing : Imprint: Springer, 2022.
Eagrán:1st ed. 2022.
Sraith:Developments in Mathematics, 70
Ábhair:
Rochtain ar líne:Link to Metadata
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
Clár na nÁbhar:
  • Preface
  • List of main symbols
  • Table of contents
  • Chapter 1. Introduction
  • Chapter 2. Preliminaries
  • Chapter 3. Uniqueness and existence results
  • Chapter 4. Interpretations of the asymptotic conditions
  • Chapter 5. Multiple log-gamma type functions
  • Chapter 6. Asymptotic analysis
  • Chapter 7. Derivatives of multiple log-gamma type functions
  • Chapter 8. Further results
  • Chapter 9. Summary of the main results
  • Chapter 10. Applications to some standard special functions
  • Chapter 11. Definining new log-gamma type functions
  • Chapter 12. Further examples
  • Chapter 13. Conclusion
  • A. Higher order convexity properties
  • B. On Krull-Webster's asymptotic condition
  • C. On a question raised by Webster
  • D. Asymptotic behaviors and bracketing
  • E. Generalized Webster's inequality
  • F. On the differentiability of \sigma_g
  • Bibliography
  • Analogues of properties of the gamma function
  • Index.