Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety /

This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testi...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Fingscheidt, Tim (Editor), Gottschalk, Hanno (Editor), Houben, Sebastian (Editor)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-01233-4
003 DE-He213
005 20240322055842.0
007 cr nn 008mamaa
008 220617s2022 sz | s |||| 0|eng d
020 |a 9783031012334  |9 978-3-031-01233-4 
024 7 |a 10.1007/978-3-031-01233-4  |2 doi 
050 4 |a TL1-483 
072 7 |a TRC  |2 bicssc 
072 7 |a TEC009090  |2 bisacsh 
072 7 |a TRC  |2 thema 
082 0 4 |a 629.2  |2 23 
245 1 0 |a Deep Neural Networks and Data for Automated Driving  |h [electronic resource] :  |b Robustness, Uncertainty Quantification, and Insights Towards Safety /  |c edited by Tim Fingscheidt, Hanno Gottschalk, Sebastian Houben. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XVIII, 427 p. 117 illus., 103 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety -- Chapter 2. Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving Performance? -- Chapter 3. Analysis and Comparison of Datasets by Leveraging Data Distributions in Latent Spaces -- Chapter 4. Optimized Data Synthesis for DNN Training and Validation by Sensor Artifact Simulation -- Chapter 5. Improved DNN Robustness by Multi-Task Training With an Auxiliary Self-Supervised Task -- Chapter 6. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation -- Chapter 7. Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representations -- Chapter 8. Confidence Calibration for Object Detection and Segmentation -- Chapter 9. Uncertainty Quantification for Object Detection: Output- and Gradient-based Approaches -- Chapter 10. Detecting and Learning the Unknown in Semantic Segmentation -- Chapter 11. Evaluating Mixture-of-Expert Architectures for Network Aggregation -- Chapter 12. Safety Assurance of Machine Learning for Perception Functions -- Chapter 13. A Variational Deep Synthesis Approach for Perception Validation -- Chapter 14. The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique -- Chapter 15. Joint Optimization for DNN Model Compression and Corruption Robustness. 
506 0 |a Open Access 
520 |a This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and,last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above. 
650 0 |a Automotive engineering. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Computer vision. 
650 0 |a Engineering  |x Data processing. 
650 1 4 |a Automotive Engineering. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Computer Vision. 
650 2 4 |a Data Engineering. 
700 1 |a Fingscheidt, Tim.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gottschalk, Hanno.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Houben, Sebastian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031012327 
776 0 8 |i Printed edition:  |z 9783031012341 
776 0 8 |i Printed edition:  |z 9783031012358 
776 0 8 |i Printed edition:  |z 9783031034916 
776 0 8 |i Printed edition:  |z 9783031034909 
776 0 8 |i Printed edition:  |z 9783031034893 
776 0 8 |i Printed edition:  |z 9783031034886 
856 4 0 |u https://doi.org/10.1007/978-3-031-01233-4  |z Link to Metadata 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-SOB 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)