Data-Driven Fault Detection and Reasoning for Industrial Monitoring

This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial proce...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Jing (Author), Zhou, Jinglin (Author), Chen, Xiaolu (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Series:Intelligent Control and Learning Systems, 3
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-981-16-8044-1
003 DE-He213
005 20240322084103.0
007 cr nn 008mamaa
008 220103s2022 si | s |||| 0|eng d
020 |a 9789811680441  |9 978-981-16-8044-1 
024 7 |a 10.1007/978-981-16-8044-1  |2 doi 
050 4 |a T59.5 
072 7 |a TBM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TBM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Wang, Jing.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data-Driven Fault Detection and Reasoning for Industrial Monitoring  |h [electronic resource] /  |c by Jing Wang, Jinglin Zhou, Xiaolu Chen. 
250 |a 1st ed. 2022. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2022. 
300 |a XVII, 264 p. 134 illus., 115 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Control and Learning Systems,  |x 2662-5466 ;  |v 3 
505 0 |a Introduction -- Basic Statistical Fault Detection Problems -- Principal Component Analysis -- Canonical Variate Analysis -- Partial Least Squares Regression -- Fisher Discriminant Analysis -- Canonical Variate Analysis -- Fault Classification based on Local Linear Embedding -- Fault Classification based on Fisher Discriminant Analysis -- Quality-Related Global-Local Partial Least Square Projection Monitoring -- Locality-Preserving Partial Least-Squares Statistical Quality Monitoring -- Locally Linear Embedding Orthogonal Projection to Latent Structure (LLEPLS) -- Bayesian Causal Network for Discrete Systems -- Probability Causal Network for Continuous Systems -- Dual Robustness Projection to Latent Structure Method based on the L_1 Norm. 
506 0 |a Open Access 
520 |a This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. 
650 0 |a Industrial engineering. 
650 0 |a Automation. 
650 0 |a Computational intelligence. 
650 1 4 |a Industrial Automation. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Automation. 
700 1 |a Zhou, Jinglin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Chen, Xiaolu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811680434 
776 0 8 |i Printed edition:  |z 9789811680458 
776 0 8 |i Printed edition:  |z 9789811680465 
830 0 |a Intelligent Control and Learning Systems,  |x 2662-5466 ;  |v 3 
856 4 0 |u https://doi.org/10.1007/978-981-16-8044-1  |z Link to Metadata 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-SOB 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)