How Data Quality Affects our Understanding of the Earnings Distribution

This open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Daniels, Reza Che (Yazar)
Müşterek Yazar: SpringerLink (Online service)
Materyal Türü: Elektronik Ekitap
Dil:İngilizce
Baskı/Yayın Bilgisi: Singapore : Springer Nature Singapore : Imprint: Springer, 2022.
Edisyon:1st ed. 2022.
Konular:
Online Erişim:Link to Metadata
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nam a22000005i 4500
001 978-981-19-3639-5
003 DE-He213
005 20230811004300.0
007 cr nn 008mamaa
008 220702s2022 si | s |||| 0|eng d
020 |a 9789811936395  |9 978-981-19-3639-5 
024 7 |a 10.1007/978-981-19-3639-5  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Daniels, Reza Che.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a How Data Quality Affects our Understanding of the Earnings Distribution  |h [electronic resource] /  |c by Reza Che Daniels. 
250 |a 1st ed. 2022. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2022. 
300 |a XX, 114 p. 11 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- A Framework for Investigating Micro Data Quality, with Application to South African Labour Market Household Surveys -- Questionnaire Design and Response Propensities for Labour Income Micro Data -- Univariate Multiple Imputation for Coarse Employee Income Data -- Conclusion: How Data Quality Affects our Understanding of the Earnings Distribution. 
506 0 |a Open Access 
520 |a This open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when the sampling frame and survey methodology for household surveys was undergoing periodic changes due to the changing geopolitical landscape in the country. This book profiles how different components of error had disproportionate magnitudes in different survey years, including coverage error, sampling error, nonresponse error, measurement error, processing error and adjustment error. The parameters of interest concern the earnings distribution, but despite this outcome of interest, the discussion is generalizable to any question in a random sample survey of households or firms. This book then investigates questionnaire design and item nonresponse by building a response propensity model for the employee income question in two South African labour market surveys: the October Household Survey (OHS, 1997-1999) and the Labour Force Survey (LFS, 2000-2003). This time period isolates a period of changing questionnaire design for the income question. Finally, this book is concerned with how to employee income data with a mixture of continuous data, bounded response data and nonresponse. A variable with this mixture of data types is called coarse data. Because the income question consists of two parts -- an initial, exact income question and a bounded income follow-up question -- the resulting statistical distribution of employee income is both continuous and discrete. The book shows researchers how to appropriately deal with coarse income data using multiple imputation. The take-home message from this book is that researchers have a responsibility to treat data quality concerns in a statistically sound manner, rather than making adjustments to public-use data in arbitrary ways, often underpinned by undefensible assumptions about an implicit unobservable loss function in the data. The demonstration of how this can be done provides a replicable concept map with applicable methods that can be utilised in any sample survey. . 
650 0 |a Statistics . 
650 0 |a Sampling (Statistics). 
650 0 |a Quantitative research. 
650 0 |a Africa  |x Economic conditions. 
650 0 |a Africa  |x History. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Survey Methodology. 
650 2 4 |a Data Analysis and Big Data. 
650 2 4 |a Methodology of Data Collection and Processing. 
650 2 4 |a African Economics. 
650 2 4 |a African History. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811936388 
776 0 8 |i Printed edition:  |z 9789811936401 
776 0 8 |i Printed edition:  |z 9789811936418 
856 4 0 |u https://doi.org/10.1007/978-981-19-3639-5  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)