Hypergraph Computation

This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based le...

Full description

Saved in:
Bibliographic Details
Main Authors: Dai, Qionghai (Author), Gao, Yue (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Series:Artificial Intelligence: Foundations, Theory, and Algorithms,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-981-99-0185-2
003 DE-He213
005 20230811004223.0
007 cr nn 008mamaa
008 230515s2023 si | s |||| 0|eng d
020 |a 9789819901852  |9 978-981-99-0185-2 
024 7 |a 10.1007/978-981-99-0185-2  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Dai, Qionghai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hypergraph Computation  |h [electronic resource] /  |c by Qionghai Dai, Yue Gao. 
250 |a 1st ed. 2023. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2023. 
300 |a XVI, 244 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-306X 
505 0 |a Chapter 1. Introduction -- Chapter 2. Mathematical Foundations of Hypergraph -- Chapter 3. Hypergraph Computation Paradigms -- 4. Hypergraph Modeling -- Chapter 5. Typical Hypergraph Computation Tasks -- 6. Hypergraph Structure Evolution -- Chapter 7. Neural Networks on Hypergraph -- Chapter 8. Large Scale Hypergraph Computation -- Chapter 9. Hypergraph Computation for Social Media Analysis -- Chapter 10. Hypergraph Computation for Medical and Biological Applications -- Chapter 11. Hypergraph Computation for Computer Vision -- Chapter 12.The Deep Hypergraph Library -- Chapter 13. Conclusions and Future Work. 
506 0 |a Open Access 
520 |a This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complex than pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate the high-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence  |x Data processing. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Machine Learning. 
650 2 4 |a Data Science. 
700 1 |a Gao, Yue.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789819901845 
776 0 8 |i Printed edition:  |z 9789819901869 
776 0 8 |i Printed edition:  |z 9789819901876 
830 0 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-306X 
856 4 0 |u https://doi.org/10.1007/978-981-99-0185-2  |z Link to Metadata 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)