Risk Assessment of Nanomaterials Toxicity

Regarding the increasing use of nanomaterials in almost every area of our daily life, toxicological risk assessment is one of the major requirements for their safe handling. Especially at workplaces, inhalation is the major route of exposure and potential toxicity, and effects on the lung need to be...

Full description

Saved in:
Bibliographic Details
Other Authors: Hartwig, Andrea (Editor), van Thriel, Christoph (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_112471
005 20230808
003 oapen
006 m o d
007 cr|mn|---annan
008 20230808s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7813-2 
020 |a 9783036578125 
020 |a 9783036578132 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7813-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Hartwig, Andrea  |4 edt 
700 1 |a van Thriel, Christoph  |4 edt 
700 1 |a Hartwig, Andrea  |4 oth 
700 1 |a van Thriel, Christoph  |4 oth 
245 1 0 |a Risk Assessment of Nanomaterials Toxicity 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (304 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Regarding the increasing use of nanomaterials in almost every area of our daily life, toxicological risk assessment is one of the major requirements for their safe handling. Especially at workplaces, inhalation is the major route of exposure and potential toxicity, and effects on the lung need to be considered. Furthermore, neurotoxicity associated with exposure to nanomaterials is a growing field of scientific investigation. However, not every single nanomaterial can be assessed in long-term animal inhalation studies, due to limited resources as well as political and societal efforts to reduce animal experiments according to the 3R principles. Thus, during the last few years, significant efforts have been dedicated to grouping nanomaterials, mainly based on advanced in vitro models. These new approach methodologies (NAMs) include detailed characterization of the respective materials in physiologically relevant media, but also more realistic exposure systems, such as co-cultures, also at the air-liquid interface, combined with comprehensive cellular investigations that provide quite detailed toxicological profiles. Thus, nanoparticles show differences in toxicity depending on their size, surface reactivity, and dissolution kinetics. Adverse cellular effects include inflammation, genotoxicity, oxidative stress, and epigenetic alterations. This Special Issue aims to highlight the recent advances in the mechanisms of nanomaterial toxicity, as well as the approaches for risk assessment, linking nanoparticle characteristics as well as in vitro toxicity to in vivo observations for advanced risk assessment. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a nanotoxicology 
653 |a titanium dioxide 
653 |a synthetic amorphous silica 
653 |a agglomerates and aggregates 
653 |a realistic exposure in vitro 
653 |a nanomaterials 
653 |a agglomerates 
653 |a air-liquid interface 
653 |a pulmonary toxicity 
653 |a metal-based nanoparticles and nanowires 
653 |a solubility 
653 |a intracellular bioavailability 
653 |a oxidative reactivity 
653 |a comet assay 
653 |a FADU assay 
653 |a engineered nanomaterials 
653 |a DNA strand breaks 
653 |a genotoxicity 
653 |a ENM interference 
653 |a hazard assessment 
653 |a database 
653 |a lung toxicity 
653 |a study quality 
653 |a nanoparticles 
653 |a gene regulation 
653 |a endocytosis 
653 |a inflammation 
653 |a NR4A1 
653 |a interlaboratory comparison 
653 |a minimal information 
653 |a quality criteria 
653 |a description standards 
653 |a graphene 
653 |a 2D 
653 |a nanoplates 
653 |a lung 
653 |a inhalation 
653 |a toxicity 
653 |a in vitro 
653 |a Cr2O3 particles 
653 |a Cr(VI) release 
653 |a cytotoxicity 
653 |a gene expression profiles 
653 |a DNA damage signaling 
653 |a DNA repair proteins 
653 |a oxidative stress 
653 |a cell death pathways 
653 |a NAMs-new approach methodologies 
653 |a ALI-air-liquid interface 
653 |a BEAS-2B 
653 |a A549 
653 |a NM-300K 
653 |a DNA damage 
653 |a chromosomal damage 
653 |a cytokines 
653 |a TiO2 NPs 
653 |a titanium dental implants 
653 |a 3D spheroids 
653 |a osteoblasts 
653 |a safe-by-design 
653 |a hazard testing 
653 |a in vitro methods 
653 |a SAbyNA 
653 |a advanced materials 
653 |a carbon nanotubes 
653 |a in vitro models 
653 |a respiratory tract 
653 |a bronchial epithelium 
653 |a alveolar epithelium 
653 |a ciliary beating frequency 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7586  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/112471  |7 0  |z DOAB: description of the publication