Self-Supervised Learning for Visual Obstacle Avoidance Technical report
With a growing number of drones, the risk of collision with other air traffic or fixed obstacles increases. New safety measures are required to keep the operation of Unmanned Aerial Vehicles (UAVs) safe. One of these measures is the use of a Collision Avoidance System (CAS), a system that helps the...
Tallennettuna:
Päätekijä: | |
---|---|
Aineistotyyppi: | Elektroninen Kirjan osa |
Kieli: | englanti |
Julkaistu: |
Delft
TU Delft Open
2022
|
Aiheet: | |
Linkit: | DOAB: download the publication DOAB: description of the publication |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Yhteenveto: | With a growing number of drones, the risk of collision with other air traffic or fixed obstacles increases. New safety measures are required to keep the operation of Unmanned Aerial Vehicles (UAVs) safe. One of these measures is the use of a Collision Avoidance System (CAS), a system that helps the drone autonomously detect and avoid obstacles. |
---|---|
Ulkoasu: | 1 electronic resource (48 p.) |
ISBN: | mg.19 9789463665094 9789463665094 |
Pääsy: | Open Access |