Leveraging Data Science for Global Health
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Devel...
Gorde:
Beste egile batzuk: | , , , , , |
---|---|
Formatua: | Baliabide elektronikoa Liburu kapitulua |
Hizkuntza: | ingelesa |
Argitaratua: |
Springer Nature
2020
|
Gaiak: | |
Sarrera elektronikoa: | DOAB: download the publication DOAB: description of the publication |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Gaia: | This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure - and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources - including news media, social media, Google Trends, and Google Street View - can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient. |
---|---|
Deskribapen fisikoa: | 1 electronic resource (475 p.) |
ISBN: | 978-3-030-47994-7 |
Sartu: | Open Access |