Leveraging Data Science for Global Health

This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Devel...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Drugi avtorji: Celi, Leo Anthony (Editor), Majumder, Maimuna S. (Editor), Ordóñez, Patricia (Editor), Osorio, Juan Sebastian (Editor), Paik, Kenneth E. (Editor), Somai, Melek (Editor)
Format: Elektronski Book Chapter
Jezik:angleščina
Izdano: Springer Nature 2020
Teme:
Online dostop:DOAB: download the publication
DOAB: description of the publication
Oznake: Označite
Brez oznak, prvi označite!
Opis
Izvleček:This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure - and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources - including news media, social media, Google Trends, and Google Street View - can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Fizični opis:1 electronic resource (475 p.)
ISBN:978-3-030-47994-7
Dostop:Open Access