Leveraging Data Science for Global Health

This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Devel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Celi, Leo Anthony (Editor), Majumder, Maimuna S. (Editor), Ordóñez, Patricia (Editor), Osorio, Juan Sebastian (Editor), Paik, Kenneth E. (Editor), Somai, Melek (Editor)
Formato: Electrónico Capítulo de libro
Lenguaje:inglés
Publicado: Springer Nature 2020
Materias:
Acceso en línea:DOAB: download the publication
DOAB: description of the publication
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure - and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources - including news media, social media, Google Trends, and Google Street View - can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Descripción Física:1 electronic resource (475 p.)
ISBN:978-3-030-47994-7
Acceso:Open Access