Chapter 4 Applications of Monte Carlo Simulation in Modelling of Biochemical Processes

The biochemical models describing complex and dynamic metabolic systems are typically multi-parametric and non-linear, thus the identification of their parameters requires nonlinear regression analysis of the experimental data. The stochastic nature of the experimental samples poses the necessity to...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Tenekedjiev, Kiril Ivanov (auth)
Andere auteurs: Nikolova, Natalia Danailova (auth), Kolev, Krasimir (auth), Ivanov, Kiril (auth), Danailova, Natalia (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: InTechOpen 2012
Onderwerpen:
Online toegang:DOAB: download the publication
DOAB: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:The biochemical models describing complex and dynamic metabolic systems are typically multi-parametric and non-linear, thus the identification of their parameters requires nonlinear regression analysis of the experimental data. The stochastic nature of the experimental samples poses the necessity to estimate not only the values fitting best to the model, but also the distribution of the parameters, and to test statistical hypotheses about the values of these parameters. In such situations the application of analytical models for parameter distributions is totally inappropriate because their assumptions are not applicable for intrinsically non-linear regressions. That is why, Monte Carlo simulations are a powerful tool to model biochemical processes.
ISBN:14984
Toegang:Open Access