Carbonic Anhydrases and Metabolism

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in all kingdoms of life, as they equilibrate the reaction between three simple but essential chemical species: CO2, bicarbonate, and protons. Discovered more than 80 years ago, in 1933, these enzymes have been extensively investigated...

Full description

Saved in:
Bibliographic Details
Main Author: Supuran, Claudiu T. (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_42706
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03897-801-5 
020 |a 9783038978015 
020 |a 9783038978008 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03897-801-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PS  |2 bicssc 
100 1 |a Supuran, Claudiu T.  |4 auth 
245 1 0 |a Carbonic Anhydrases and Metabolism 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (184 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in all kingdoms of life, as they equilibrate the reaction between three simple but essential chemical species: CO2, bicarbonate, and protons. Discovered more than 80 years ago, in 1933, these enzymes have been extensively investigated due to the biomedical application of their inhibitors, but also because they are an extraordinary example of convergent evolution, with seven genetically distinct CA families that evolved independently in Bacteria, Archaea, and Eukarya. CAs are also among the most efficient enzymes known in nature, due to the fact that the uncatalyzed hydration of CO2 is a very slow process and the physiological demands for its conversion to ionic, soluble species is very high. Inhibition of the CAs has pharmacological applications in many fields, such as antiglaucoma, anticonvulsant, antiobesity, and anticancer agents/diagnostic tools, but is also emerging for designing anti-infectives, i.e., antifungal, antibacterial, and antiprotozoan agents with a novel mechanism of action. Mitochondrial CAs are implicated in de novo lipogenesis, and thus selective inhibitors of such enzymes may be useful for the development of new antiobesity drugs. As tumor metabolism is diverse compared to that of normal cells, ultimately, relevant contributions on the role of the tumor-associated isoforms CA IX and XII in these phenomena have been published and the two isoforms have been validated as novel antitumor/antimetastatic drug targets, with antibodies and small-molecule inhibitors in various stages of clinical development. CAs also play a crucial role in other metabolic processes connected with urea biosynthesis, gluconeogenesis, and so on, since many carboxylation reactions catalyzed by acetyl-coenzyme A carboxylase or pyruvate carboxylase use bicarbonate, not CO2, as a substrate. In organisms other than mammals, e.g., plants, algae, and cyanobacteria, CAs are involved in photosynthesis, whereas in many parasites (fungi, protozoa), they are involved in the de novo synthesis of important metabolites (lipids, nucleic acids, etc.). The metabolic effects related to interference with CA activity, however, have been scarcely investigated. The present Special Issue of Metabolites aims to fill this gap by presenting the latest developments in the field of CAs and their role in metabolism. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Biology, life sciences  |2 bicssc 
653 |a antibiotic 
653 |a inhibitors 
653 |a glaucoma 
653 |a metabolic role 
653 |a inhibitor 
653 |a engineered bacteria 
653 |a carbonic anhydrase inhibitors 
653 |a drug discovery 
653 |a enzyme inhibition 
653 |a V-ATPases 
653 |a photosynthesis 
653 |a Chlamydomonas reinhardtii 
653 |a metalloenzymes 
653 |a CO2 capture 
653 |a bicarbonate 
653 |a benzamide 
653 |a hypoxia 
653 |a antibody 
653 |a model alga 
653 |a cancer therapeutics 
653 |a CA gene family 
653 |a resistance 
653 |a isoforms IX and XII 
653 |a cancer metabolism 
653 |a MMP14 
653 |a carbonic anhydrase IX 
653 |a carboxylation 
653 |a bacterial enzymes 
653 |a antitumor agent 
653 |a metabolism 
653 |a activator 
653 |a bacterial carbonic anhydrases 
653 |a amine 
653 |a amino acid 
653 |a pH regulation 
653 |a proton pump inhibitors 
653 |a pathogens 
653 |a sulfonamide 
653 |a metastasis 
653 |a hypoxic tumor 
653 |a carbonic anhydrase 
653 |a pH 
653 |a carbonic anhydrases 
653 |a protozoan 
653 |a integrin 
653 |a Entamoeba histolytica 
653 |a tumors 
653 |a human isoform 
653 |a acidity 
653 |a invasion 
653 |a radiation 
653 |a tumor 
653 |a carbonic anhydrase XII 
653 |a transporter 
653 |a migration 
653 |a cancer 
653 |a tumor microenvironment 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1215  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/42706  |7 0  |z DOAB: description of the publication