Deterministic Sampling for Nonlinear Dynamic State Estimation

The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distribut...

Full description

Saved in:
Bibliographic Details
Main Author: Gilitschenski, Igor (auth)
Format: Electronic Book Chapter
Language:English
Published: KIT Scientific Publishing 2016
Series:Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_44863
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2016 xx |||||o ||| 0|eng d
020 |a KSP/1000051670 
020 |a 9783731504733 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000051670  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Gilitschenski, Igor  |4 auth 
245 1 0 |a Deterministic Sampling for Nonlinear Dynamic State Estimation 
260 |b KIT Scientific Publishing  |c 2016 
300 |a 1 electronic resource (XVI, 167 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
653 |a Sensordatenfusion 
653 |a Richtungsstatistik 
653 |a Directional Statistics 
653 |a Stochastische Filterung 
653 |a Sensor Data Fusion 
653 |a DichteapproximationStochastic Filtering 
653 |a Density Approximation 
856 4 0 |a www.oapen.org  |u https://www.ksp.kit.edu/9783731504733  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/44863  |7 0  |z DOAB: description of the publication