Efficient Reinforcement Learning using Gaussian Processes
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model...
Salvato in:
Autore principale: | Deisenroth, Marc Peter (auth) |
---|---|
Natura: | Elettronico Capitolo di libro |
Lingua: | inglese |
Pubblicazione: |
KIT Scientific Publishing
2010
|
Serie: | Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
|
Soggetti: | |
Accesso online: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
|
Documenti analoghi
Documenti analoghi
-
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
di: Zhou, Xuefeng
Pubblicazione: (2020) -
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
di: Zhou, Xuefeng
Pubblicazione: (2020) -
Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications
di: Huber, Marco
Pubblicazione: (2015) -
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
di: Zhou, Xuefeng, et al.
Pubblicazione: (2020) -
Gaussian Processes for Machine Learning
di: Rasmussen, Carl Edward
Pubblicazione: (2005)