Efficient Reinforcement Learning using Gaussian Processes
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model...
Furkejuvvon:
Váldodahkki: | Deisenroth, Marc Peter (auth) |
---|---|
Materiálatiipa: | Elektrovnnalaš Girjji oassi |
Giella: | eaŋgalasgiella |
Almmustuhtton: |
KIT Scientific Publishing
2010
|
Ráidu: | Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
|
Fáttát: | |
Liŋkkat: | DOAB: download the publication DOAB: description of the publication |
Fáddágilkorat: |
Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
|
Geahča maid
-
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
Dahkki: Zhou, Xuefeng
Almmustuhtton: (2020) -
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
Dahkki: Zhou, Xuefeng
Almmustuhtton: (2020) -
Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications
Dahkki: Huber, Marco
Almmustuhtton: (2015) -
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
Dahkki: Zhou, Xuefeng, et al.
Almmustuhtton: (2020) -
Gaussian Processes for Machine Learning
Dahkki: Rasmussen, Carl Edward
Almmustuhtton: (2005)