New Trends in Differential and Difference Equations and Applications

This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques use...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Minhós, Feliz Manuel (auth)
Otros Autores: Fialho, João (auth)
Formato: Electrónico Capítulo de libro
Lenguaje:inglés
Publicado: MDPI - Multidisciplinary Digital Publishing Institute 2019
Materias:
Acceso en línea:DOAB: download the publication
DOAB: description of the publication
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_54624
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03921-539-3 
020 |a 9783039215393 
020 |a 9783039215386 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03921-539-3  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Minhós, Feliz Manuel  |4 auth 
700 1 |a Fialho, João  |4 auth 
245 1 0 |a New Trends in Differential and Difference Equations and Applications 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (198 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a heteroclinic solutions 
653 |a non-instantaneous impulses 
653 |a Schauder's fixed point theory 
653 |a dichotomy 
653 |a second-order differential/difference/q-difference equation of hypergeometric type 
653 |a differential equations 
653 |a a priori estimates 
653 |a global solutions 
653 |a generalized Liouville equation 
653 |a Hilbert space 
653 |a dissipation 
653 |a collocation method 
653 |a exponential dichotomy 
653 |a Sumudu decomposition method 
653 |a three-step Taylor method 
653 |a dynamical system 
653 |a lower and upper solutions 
653 |a problems in the real line 
653 |a Nagumo condition on the real line 
653 |a SIRS epidemic model 
653 |a first order periodic systems 
653 |a regular solutions 
653 |a Clairin's method 
653 |a coupled nonlinear systems 
653 |a Navier-Stokes equations 
653 |a Bäcklund transformation 
653 |a asymptotic stability 
653 |a Caputo fractional derivative 
653 |a exponential stability 
653 |a difference equations 
653 |a lipschitz stability 
653 |a strong nonlinearities 
653 |a polynomial solution 
653 |a integro-differentials 
653 |a kinetic energy 
653 |a Legendre wavelets 
653 |a weak solutions 
653 |a discrete Lyapunov equation 
653 |a population dynamics 
653 |a non-uniform lattices 
653 |a Korteweg-de Vries equation 
653 |a time-dependent partial differential equations 
653 |a mean curvature operator 
653 |a functional boundary conditions 
653 |a mathematical modelling 
653 |a fixed point theory 
653 |a limit-periodic solutions 
653 |a Arzèla Ascoli theorem 
653 |a Miura transformation 
653 |a state dependent delays 
653 |a ?-Laplacian operator 
653 |a divided-difference equations 
653 |a effective existence criteria 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1696  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/54624  |7 0  |z DOAB: description of the publication