Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation
This work provides novel robust and regularized algorithms for parameter estimation with applications in vehicle tractive force prediction and mass estimation. Given a large record of real world data from test runs on public roads, recursive algorithms adjusted the unknown vehicle parameters under a...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
KIT Scientific Publishing
2018
|
Series: | Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_58556 | ||
005 | 20210212 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210212s2018 xx |||||o ||| 0|eng d | ||
020 | |a KSP/1000083492 | ||
020 | |a 9783731508076 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5445/KSP/1000083492 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
100 | 1 | |a Rhode, Stephan |4 auth | |
245 | 1 | 0 | |a Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation |
260 | |b KIT Scientific Publishing |c 2018 | ||
300 | |a 1 electronic resource (XXIV, 196 p. p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This work provides novel robust and regularized algorithms for parameter estimation with applications in vehicle tractive force prediction and mass estimation. Given a large record of real world data from test runs on public roads, recursive algorithms adjusted the unknown vehicle parameters under a broad variation of statistical assumptions for two linear gray-box models. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-sa/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-sa/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
653 | |a Total Least Squares | ||
653 | |a errors-in-variables | ||
653 | |a robust estimation | ||
653 | |a Onlinefilter | ||
653 | |a recursive estimation | ||
653 | |a Robuste Schätzer | ||
653 | |a Systemidentifikation | ||
653 | |a system identification | ||
856 | 4 | 0 | |a www.oapen.org |u https://www.ksp.kit.edu/9783731508076 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/58556 |7 0 |z DOAB: description of the publication |