State Estimation for Distributed Systems with Stochastic and Set-membership Uncertainties

State estimation techniques for centralized, distributed, and decentralized systems are studied. An easy-to-implement state estimation concept is introduced that generalizes and combines basic principles of Kalman filter theory and ellipsoidal calculus. By means of this method, stochastic and set-me...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Noack, Benjamin (auth)
Format: Électronique Chapitre de livre
Langue:anglais
Publié: KIT Scientific Publishing 2014
Collection:Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
Sujets:
Accès en ligne:DOAB: download the publication
DOAB: description of the publication
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:State estimation techniques for centralized, distributed, and decentralized systems are studied. An easy-to-implement state estimation concept is introduced that generalizes and combines basic principles of Kalman filter theory and ellipsoidal calculus. By means of this method, stochastic and set-membership uncertainties can be taken into consideration simultaneously. Different solutions for implementing these estimation algorithms in distributed networked systems are presented.
Description matérielle:1 electronic resource (XVIII, 257 p. p.)
ISBN:KSP/1000036878
9783731501244
Accès:Open Access