Chapter 1 Principles of Mathematical Modeling

Mathematical Modeling describes a process and an object by use of the mathematical language. A process or an object is presented in a "pure form" in Mathematical Modeling when external perturbations disturbing the study are absent. Computer simulation is a natural continuation of the Mathe...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Mityushev, Vladimir (auth)
अन्य लेखक: Nawalaniec, Wojciech (auth), Rylko, Natalia (auth)
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
भाषा:अंग्रेज़ी
प्रकाशित: Taylor & Francis 2018
विषय:
ऑनलाइन पहुंच:DOAB: download the publication
DOAB: description of the publication
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_63980
005 20210312
003 oapen
006 m o d
007 cr|mn|---annan
008 20210312s2018 xx |||||o ||| 0|eng d
020 |a 9781138197657 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a PB  |2 bicssc 
072 7 |a PBCN  |2 bicssc 
100 1 |a Mityushev, Vladimir  |4 auth 
700 1 |a Nawalaniec, Wojciech  |4 auth 
700 1 |a Rylko, Natalia  |4 auth 
245 1 0 |a Chapter 1 Principles of Mathematical Modeling 
260 |b Taylor & Francis  |c 2018 
300 |a 1 electronic resource (25 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Mathematical Modeling describes a process and an object by use of the mathematical language. A process or an object is presented in a "pure form" in Mathematical Modeling when external perturbations disturbing the study are absent. Computer simulation is a natural continuation of the Mathematical Modeling. Computer simulation can be considered as a computer experiment which corresponds to an experiment in the real world. Such a treatment is rather related to numerical simulations. Symbolic simulations yield more than just an experiment. Mathematical Modeling of stochastic processes is based on the probability theory, in particular, that leads to using of random walks, Monte Carlo methods and the standard statistics tools. Symbolic simulations are usually realized in the form of solution to equations in one unknown, to a system of linear algebraic equations, both ordinary and partial differential equations (ODE and PDE). Various mathematical approaches to stability are discussed in courses of ODE and PDE. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Mathematics  |2 bicssc 
650 7 |a Number systems  |2 bicssc 
653 |a Advanced, Analysis, Applications, Asymptomatic, Principals, Vector, Calculus, Classics, Composites, Computations, Dimensional, Equations, General, Heat, Introduction, Mathematics Mechanical, Methods, Numercal, ODEs, Simulations, Stochastic, Symbolic, Stationary 
773 1 0 |t Introduction to Mathematical Modeling and Computer Simulations  |7 nnaa  |o OAPEN Library UUID: 2d14526e-be2c-420b-a03f-cc8dac44f05a 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/47207/1/9781315277240_oachapter1.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/63980  |7 0  |z DOAB: description of the publication