Recurrent Neural Networks for Temporal Data Processing

The RNNs (Recurrent Neural Networks) are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems dealing with signals evolving...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Muut tekijät: Cardot, Hubert (Toimittaja)
Aineistotyyppi: Elektroninen Kirjan osa
Kieli:englanti
Julkaistu: IntechOpen 2011
Aiheet:
Linkit:DOAB: download the publication
DOAB: description of the publication
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
Kuvaus
Yhteenveto:The RNNs (Recurrent Neural Networks) are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems dealing with signals evolving through time. Their internal memory gives them the ability to naturally take time into account. Valuable approximation results have been obtained for dynamical systems.
Ulkoasu:1 electronic resource (114 p.)
ISBN:631
9789533076850
9789535155218
Pääsy:Open Access