Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
In survival analysis, time-varying covariates are endogenous when their measurements are directly related to the event status and incomplete information occur at random points during the follow-up. Consequently, the time-dependent Cox model leads to biased estimates. Joint models (JM) allow to corre...
Gespeichert in:
1. Verfasser: | Ferrante, Pasquale (auth) |
---|---|
Weitere Verfasser: | DI MASO, MATTEO (auth), Ferraroni, Monica (auth), Delbue, Serena (auth), Ambrogi, Federico (auth) |
Format: | Elektronisch Buchkapitel |
Sprache: | Englisch |
Veröffentlicht: |
Florence
Firenze University Press
2021
|
Schriftenreihe: | Proceedings e report
|
Schlagworte: | |
Online-Zugang: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Ähnliche Einträge
Ähnliche Einträge
-
Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
von: Ferrante, Pasquale
Veröffentlicht: (2021) -
Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
von: Ferrante, Pasquale
Veröffentlicht: (2021) -
Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
von: Ferrante, Pasquale
Veröffentlicht: (2021) -
Chapter The joint estimation of accuracy and speed: An application to the INVALSI data
von: Bungaro, Luca
Veröffentlicht: (2023) -
Chapter The joint estimation of accuracy and speed: An application to the INVALSI data
von: Bungaro, Luca
Veröffentlicht: (2023)