Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
In survival analysis, time-varying covariates are endogenous when their measurements are directly related to the event status and incomplete information occur at random points during the follow-up. Consequently, the time-dependent Cox model leads to biased estimates. Joint models (JM) allow to corre...
保存先:
第一著者: | Ferrante, Pasquale (auth) |
---|---|
その他の著者: | DI MASO, MATTEO (auth), Ferraroni, Monica (auth), Delbue, Serena (auth), Ambrogi, Federico (auth) |
フォーマット: | 電子媒体 図書の章 |
言語: | 英語 |
出版事項: |
Florence
Firenze University Press
2021
|
シリーズ: | Proceedings e report
|
主題: | |
オンライン・アクセス: | DOAB: download the publication DOAB: description of the publication |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
著者:: Ferrante, Pasquale
出版事項: (2021) -
Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
著者:: Ferrante, Pasquale
出版事項: (2021) -
Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
著者:: Ferrante, Pasquale
出版事項: (2021) -
Chapter The joint estimation of accuracy and speed: An application to the INVALSI data
著者:: Bungaro, Luca
出版事項: (2023) -
Chapter The joint estimation of accuracy and speed: An application to the INVALSI data
著者:: Bungaro, Luca
出版事項: (2023)