Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images

In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast th...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Wetzel, Johannes (auth)
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
भाषा:अंग्रेज़ी
प्रकाशित: Karlsruhe KIT Scientific Publishing 2022
श्रृंखला:Forschungsberichte aus der Industriellen Informationstechnik
विषय:
ऑनलाइन पहुंच:DOAB: download the publication
DOAB: description of the publication
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
विवरण
सारांश:In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence.
भौतिक वर्णन:1 electronic resource (204 p.)
आईएसबीएन:KSP/1000144094
9783731511779
अभिगमन:Open Access