Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images
In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast th...
में बचाया:
मुख्य लेखक: | |
---|---|
स्वरूप: | इलेक्ट्रोनिक पुस्तक अध्याय |
भाषा: | अंग्रेज़ी |
प्रकाशित: |
Karlsruhe
KIT Scientific Publishing
2022
|
श्रृंखला: | Forschungsberichte aus der Industriellen Informationstechnik
|
विषय: | |
ऑनलाइन पहुंच: | DOAB: download the publication DOAB: description of the publication |
टैग: |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
सारांश: | In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence. |
---|---|
भौतिक वर्णन: | 1 electronic resource (204 p.) |
आईएसबीएन: | KSP/1000144094 9783731511779 |
अभिगमन: | Open Access |