Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
The growing success of Machine Learning (ML) is making significant improvements to predictive models, facilitating their integration in various application fields, especially the healthcare context. However, it still has limitations and drawbacks, such as the lack of interpretability which does not...
Tallennettuna:
Päätekijä: | Aria, Massimo (auth) |
---|---|
Muut tekijät: | Cuccurullo, Corrado (auth), Gnasso, Agostino (auth) |
Aineistotyyppi: | Elektroninen Kirjan osa |
Kieli: | englanti |
Julkaistu: |
Florence
Firenze University Press
2021
|
Sarja: | Proceedings e report
|
Aiheet: | |
Linkit: | DOAB: download the publication DOAB: description of the publication |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Samankaltaisia teoksia
-
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
Tekijä: Aria, Massimo
Julkaistu: (2021) -
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
Tekijä: Aria, Massimo
Julkaistu: (2021) -
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
Tekijä: Aria, Massimo
Julkaistu: (2021) -
Chapter Effect of Climate Change and anthropogenic pressures on the European eel Anguilla anguilla from RAMSAR Wetland Ichkeul Lake: prediction from the Random Forest model
Tekijä: Toujani, Rachid
Julkaistu: (2022) -
Chapter Effect of Climate Change and anthropogenic pressures on the European eel Anguilla anguilla from RAMSAR Wetland Ichkeul Lake: prediction from the Random Forest model
Tekijä: Toujani, Rachid
Julkaistu: (2022)