Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
The growing success of Machine Learning (ML) is making significant improvements to predictive models, facilitating their integration in various application fields, especially the healthcare context. However, it still has limitations and drawbacks, such as the lack of interpretability which does not...
Bewaard in:
Hoofdauteur: | Aria, Massimo (auth) |
---|---|
Andere auteurs: | Cuccurullo, Corrado (auth), Gnasso, Agostino (auth) |
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
Florence
Firenze University Press
2021
|
Reeks: | Proceedings e report
|
Onderwerpen: | |
Online toegang: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Gelijkaardige items
-
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
door: Aria, Massimo
Gepubliceerd in: (2021) -
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
door: Aria, Massimo
Gepubliceerd in: (2021) -
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
door: Aria, Massimo
Gepubliceerd in: (2021) -
Chapter Effect of Climate Change and anthropogenic pressures on the European eel Anguilla anguilla from RAMSAR Wetland Ichkeul Lake: prediction from the Random Forest model
door: Toujani, Rachid
Gepubliceerd in: (2022) -
Chapter Effect of Climate Change and anthropogenic pressures on the European eel Anguilla anguilla from RAMSAR Wetland Ichkeul Lake: prediction from the Random Forest model
door: Toujani, Rachid
Gepubliceerd in: (2022)