Recent Advances and Applications of Machine Learning in Metal Forming Processes

Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics rel...

Description complète

Enregistré dans:
Détails bibliographiques
Autres auteurs: Prates, Pedro (Éditeur intellectuel), Pereira, André (Éditeur intellectuel)
Format: Électronique Chapitre de livre
Langue:anglais
Publié: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Sujets:
Accès en ligne:DOAB: download the publication
DOAB: description of the publication
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics related to metal forming processes, such as: Classification, detection and prediction of forming defects; Material parameters identification; Material modelling; Process classification and selection; Process design and optimization. The purpose of this Special Issue is to disseminate state-of-the-art ML applications in metal forming processes, covering 10 papers about the abovementioned and related topics.
Description matérielle:1 electronic resource (210 p.)
ISBN:books978-3-0365-5772-4
9783036557717
9783036557724
Accès:Open Access