Micro/Nanofluidic and Lab-on-a-Chip Devices for Biomedical Applications

Recently, microfluidic, nanofluidic and lab-on-a-chip devices have gained particular attention in biomedical applications. Due to their advantages, such as miniaturization, versatility, ease of use, cost-effectiveness, and the potential to replace animal models for drug development and testing, thes...

Full description

Saved in:
Bibliographic Details
Other Authors: Carvalho, Violeta (Editor), Teixeira, Senhorinha de Fátima Capela Fortunas (Editor), Ribeiro, João (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_95875
005 20230105
003 oapen
006 m o d
007 cr|mn|---annan
008 20230105s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-6099-1 
020 |a 9783036561004 
020 |a 9783036560991 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-6099-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Carvalho, Violeta  |4 edt 
700 1 |a Teixeira, Senhorinha de Fátima Capela Fortunas  |4 edt 
700 1 |a Ribeiro, João  |4 edt 
700 1 |a Carvalho, Violeta  |4 oth 
700 1 |a Teixeira, Senhorinha de Fátima Capela Fortunas  |4 oth 
700 1 |a Ribeiro, João  |4 oth 
245 1 0 |a Micro/Nanofluidic and Lab-on-a-Chip Devices for Biomedical Applications 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (232 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Recently, microfluidic, nanofluidic and lab-on-a-chip devices have gained particular attention in biomedical applications. Due to their advantages, such as miniaturization, versatility, ease of use, cost-effectiveness, and the potential to replace animal models for drug development and testing, these devices hold tremendous potential to revolutionize the research of more effective treatments for several diseases that threaten human life. With integrated biosensors, these devices allow the development and design of micro- and nanoparticles to be studied in detail, modelling human physiology, investigating the molecular and cellular mechanisms underlying disease formation and progression, and gaining insights into the performance and long-term effects of responsive drug delivery nanocarriers. This Special Issue gathered research papers, and review articles focusing on novel microfluidic, nanofluidic and lab-on-a-chip devices for biomedical applications, addressing all steps related to fabrication, biosensor integration and development, characterization, numerical simulations and validation of the devices, optimization and, the translation of these devices from research labs to industry settings. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a protein biomarker 
653 |a microarray 
653 |a microfluidic cassette 
653 |a multiplex measurement 
653 |a immunoassay 
653 |a point-of-care testing 
653 |a microfluidic device 
653 |a small intestine 
653 |a ex vivo 
653 |a histology 
653 |a embedded resin 
653 |a sectioning 
653 |a peptide biosensor 
653 |a lab-on-a-chip 
653 |a label-free detection 
653 |a peptide aptamers 
653 |a protein biomarkers 
653 |a microfluidic biochip 
653 |a troponin T 
653 |a computational simulations 
653 |a drug discovery 
653 |a organ-on-a-chip 
653 |a microfluidic devices 
653 |a preclinical models 
653 |a numerical simulations 
653 |a automation 
653 |a non-enzymatic 
653 |a DNA amplification 
653 |a L-DNA 
653 |a microfluidic 
653 |a fluorescence 
653 |a paper microfluidics 
653 |a sweat 
653 |a sensing 
653 |a hydrogels 
653 |a lactate 
653 |a osmotic pumping 
653 |a evaporation 
653 |a capillary 
653 |a wicking 
653 |a biochemical assay 
653 |a microfluidics 
653 |a cell trap 
653 |a RBC 
653 |a evolutionary algorithm 
653 |a generative design 
653 |a artificial intelligence 
653 |a organ-on-chip 
653 |a liver-on-chip 
653 |a liver disease 
653 |a multi-level microfluidic device 
653 |a live cell imaging 
653 |a long-term microscopy imaging 
653 |a focus drifting 
653 |a immersion oil viscosity 
653 |a bacterial population dynamics 
653 |a single-cell studies 
653 |a E. coli 
653 |a mother machine 
653 |a computational fluid dynamics 
653 |a cancer-on-chip 
653 |a xenograft 
653 |a colorectal cancer 
653 |a pharmacodynamics 
653 |a pharmacokinetics 
653 |a drug efficacy 
653 |a oxaliplatin 
653 |a microfabrication 
653 |a microphysiological system 
653 |a biophysical stimuli 
653 |a biochemical stimuli 
653 |a in vitro cell culture 
653 |a cortical neurons 
653 |a hippocampal neurons 
653 |a electrical stimulation 
653 |a Micro-Electrode Arrays 
653 |a engineered neuronal networks 
653 |a polydimethylsiloxane 
653 |a microchannels 
653 |a in vivo micro bioreactor 
653 |a additive manufacturing 
653 |a poly-(ethylene glycol)-diacrylate 
653 |a biocompatibility 
653 |a COVID-19 
653 |a diagnosis 
653 |a image analysis 
653 |a PCR 
653 |a SARS-CoV-2 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6532  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/95875  |7 0  |z DOAB: description of the publication