Multiscale Cohort Modeling of Atrial Electrophysiology Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nagel, Claudia (auth)
Format: Elektronisch Buchkapitel
Sprache:Englisch
Veröffentlicht: KIT Scientific Publishing 2023
Schriftenreihe:Karlsruhe transactions on biomedical engineering
Schlagworte:
Online-Zugang:DOAB: download the publication
DOAB: description of the publication
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fibrillation risk stratification with machine learning techniques and thus, reduces the risk of stroke in affected patients.
Beschreibung:1 electronic resource (280 p.)
ISBN:KSP/1000155927
Zugangseinschränkungen:Open Access