A GP130-Targeting Small Molecule, LMT-28, Reduces LPS-Induced Bone Resorption around Implants in Diabetic Models by Inhibiting IL-6/GP130/JAK2/STAT3 Signaling

In this study, we examined the effect of the GP130-targeting molecule, LMT-28, on lipopolysaccharide- (LPS-) induced bone resorption around implants in diabetic models using in vitro and rat animal experiments. First, LMT-28 was added to osteoblasts stimulated by LPS and advanced glycation end produ...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi-qi Liu (Author), Wei-wei Wu (Author), Jian Yang (Author), Rui-bin Wang (Author), Ling-ling Yuan (Author), Pei-zhao Peng (Author), Mao-yun Zeng (Author), Ke Yu (Author)
Format: Book
Published: Hindawi Limited, 2023-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we examined the effect of the GP130-targeting molecule, LMT-28, on lipopolysaccharide- (LPS-) induced bone resorption around implants in diabetic models using in vitro and rat animal experiments. First, LMT-28 was added to osteoblasts stimulated by LPS and advanced glycation end products (AGEs), and nuclear factor-κB receptor-activating factor ligand (RANKL) and associated pathways were evaluated. Then, LMT-28 was administered by gavage at 0.23 mg/kg once every 5 days for 2 weeks to type 2 diabetic rats with peri-implantitis induced by LPS injection and silk ligature. The expression of IL-6 and RANKL was evaluated by immunohistochemistry, and the bone resorption around implants was evaluated by microcomputed tomography. The results showed that LMT-28 downregulated the expression of RANKL through the JAK2/STAT3 signaling pathway in osteoblasts stimulated by LPS and AGEs, reduced bone resorption around implants with peri-implantitis, decreased the expression of IL-6 and RANKL, and decreased osteoclast activity in type 2 diabetic rats. This study confirmed the ability of LMT-28 to reduce LPS-induced bone resorption around implants in diabetic rats.
Item Description:1466-1861
10.1155/2023/9330439