City puzzles: Does urban land scape affect genetic population structure in Aedes aegypti?

Cities usually offer a suitable environment for the dengue vector Aedes aegypti, providing oviposition sites, accessibility to human hosts and nectar meals. However, large urban centres are highly heterogeneous environments, forming a patched landscape that could affect Ae. aegypti population dynami...

Full description

Saved in:
Bibliographic Details
Main Authors: Lucía Maffey (Author), Viviana Confalonieri (Author), Esteban Hasson (Author), Nicolás Schweigmann (Author)
Format: Book
Published: Public Library of Science (PLoS), 2022-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_07eae83c941941e295d0cc0187c9715b
042 |a dc 
100 1 0 |a Lucía Maffey  |e author 
700 1 0 |a Viviana Confalonieri  |e author 
700 1 0 |a Esteban Hasson  |e author 
700 1 0 |a Nicolás Schweigmann  |e author 
245 0 0 |a City puzzles: Does urban land scape affect genetic population structure in Aedes aegypti? 
260 |b Public Library of Science (PLoS),   |c 2022-07-01T00:00:00Z. 
500 |a 1935-2727 
500 |a 1935-2735 
500 |a 10.1371/journal.pntd.0010549 
520 |a Cities usually offer a suitable environment for the dengue vector Aedes aegypti, providing oviposition sites, accessibility to human hosts and nectar meals. However, large urban centres are highly heterogeneous environments, forming a patched landscape that could affect Ae. aegypti population dynamics and dispersal. Here, we performed a genome-wide analysis using Rad-seq data from 99 Ae. aegypti specimens collected in three areas within Buenos Aires city with varying levels of urbanization/land use: highly urbanized Area 1, intermediate Area 2 and poorly urbanized Area 3. We found an inverse association between urbanization levels and spatial genetic structure. Populations from highly urbanized Area 1 did not present genetic structure whereas two and three clusters were detected in Areas 2 and 3, respectively. In the case of Area 3, initial analyses showed separation in clusters was mostly due to elevated consanguinity within sites although three clusters were still detected after closely related individuals were discarded. Mosquitoes around each site displayed a high degree of isolation, evidencing a close dependence between the vector and human dwellings. Interestingly, specimens from distant boroughs (within the limits of the city) and the city's outskirts formed a single cluster with inner city sites (Area 1), highlighting the role of passive transport in shaping population structure. Genetic distances were poorly correlated with geographic distances in Buenos Aires, suggesting a stronger influence of passive than active dispersal on population structure. Only Area 2 displayed a significant isolation-by-distance pattern (p = 0.046), with males dispersing more than females (p = 0.004 and p = 0.016, respectively). Kinship analyses allowed us to detect full-siblings located 1.5 km apart in Area 1, which could be due to an extreme event of active female dispersal. Effective population size was higher in Area 2 confirming that cemeteries represent highly favourable environments for Ae. aegypti and need to be specifically targeted. Our results suggest that control programs should take into account urban landscape heterogeneity in order to improve vector control. 
546 |a EN 
690 |a Arctic medicine. Tropical medicine 
690 |a RC955-962 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n PLoS Neglected Tropical Diseases, Vol 16, Iss 7, p e0010549 (2022) 
787 0 |n https://doi.org/10.1371/journal.pntd.0010549 
787 0 |n https://doaj.org/toc/1935-2727 
787 0 |n https://doaj.org/toc/1935-2735 
856 4 1 |u https://doaj.org/article/07eae83c941941e295d0cc0187c9715b  |z Connect to this object online.