Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
Gene expression profiles are useful for assessing the efficacy and side effects of drugs. In this paper, we propose a new generative model that infers drug molecules that could induce a desired change in gene expression. Our model-the Bidirectional Adversarial Autoencoder-explicitly separates cellul...
Spremljeno u:
Glavni autori: | Rim Shayakhmetov (Autor), Maksim Kuznetsov (Autor), Alexander Zhebrak (Autor), Artur Kadurin (Autor), Sergey Nikolenko (Autor), Alexander Aliper (Autor), Daniil Polykovskiy (Autor) |
---|---|
Format: | Knjiga |
Izdano: |
Frontiers Media S.A.,
2020-04-01T00:00:00Z.
|
Teme: | |
Online pristup: | Connect to this object online. |
Oznake: |
Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
|
Slični predmeti
-
Addendum: Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
od: Rim Shayakhmetov, i dr.
Izdano: (2020) -
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
od: Daniil Polykovskiy, i dr.
Izdano: (2020) -
Cross-Adversarial Learning for Molecular Generation in Drug Design
od: Banghua Wu, i dr.
Izdano: (2022) -
Generative Adversarial Networks and Its Applications in Biomedical Informatics
od: Lan Lan, i dr.
Izdano: (2020) -
Use of Generative Adversarial Networks (GANs) in Educational Technology Research
od: Anabel Bethencourt-Aguilar, i dr.
Izdano: (2023)